module Region where

type Point = (Double, Double)

type Region = Point -> Bool

type Radius = Double

rectangle :: Double -> Double -> Region

rectangle w h = \(x, y) -> and [x >= -w', x <= w', y > -h', y <= h']
where

w'' =w/ 2

h'" =h / 2

inside :: Point -> Region —-> Bool

p ‘inside’ r = r p

-— For Pass

dist :: Point -> Point -> Double

dist (px, py) (ax, qy) = sqgrt ((gx - px)"2 + (qy - py)"2)

circle :: Radius -> Region

circle r = \p -> dist (0, 0) p <= r

outside :: Region -> Region

outside r = \p -> not (p “inside’ r)

combine :: Region -> Region -> Region

r ‘combine’ s = \p -> r p & s p -- The task was not clear on how to combine, it

is also OK to define it as an or
data Proximity = Close | Near | Far deriving (Eqg, Ord, Show)

proximity :: Point -> Point -> Proximity
proximity from to

| d > 2 = Far

| d > 1 = Near

| otherwise = Close
where
d = dist from to

-— For excellent

move :: Point -> Region -> Region

move (dx, dy) r =r . \(x, y) —> (x - dx, y - dy)

annulus :: Radius -> Radius -> Region

annulus r s | r <= s = outside (circle r) “combine’ circle s

| otherwise = error "annulus: second radius should be larger"

redCircle, greenAnnulus, blueThing :: Region
redCircle = move (2, 2) $ circle 3
greenAnnulus = move (-5, 5) S annulus 2 1

blueThing = move (-2, -4) $ rectangle 10 4 “combine” move (4, 0) (circle 2)

module Keith where

-— For pass:

digits :: Int -> Int -> [Int]

digits base n = case n "divMod base of
(0, r) -> [r]
(g, r) -> r : digits base g

isKeith :: Int -> Bool

isKeith = isKeithBase 10

-— For excellent:

isKeithBase :: Int -> Int -> Bool
isKeithBase base n = go (digits base n)
where
go xs | n < base = False -- that is length xs < 2
| m < n = go (m : init xs)
| otherwise = m == n
where
m = sum Xs
keithNumbers :: [Int]

keithNumbers = filter isKeith [1..]

module Battle where

import Data.List (partition)
import Test.QuickCheck
import Region

-— For pass:
data Piece = Piece { description :: String, region :: Region }
instance Show Piece where -- This was quite confusing for many, we take it away

from the exam
show = description
allPieces :: [Piece]
allPieces = [heli, tank, ship]
where
tank = Piece "Tank" (rectangle 2 3)

ship = Piece "Ship" (rectangle 3 6)

heli = Piece "Heli" (circle 2)
movePiece :: Point -> Piece -> Piece
movePiece pos (Piece desc r) = Piece desc (move pos r)
fire :: IO Point

fire = do

putStr "Take a shot! Please give the x-coordinate:\n> "
x <- readLn

putStr "And now the y-coordinate:\n> "

y <- readLn

return (x, V)

-— For excellent:

genPiece :: Gen Piece
genPiece = let g = choose (-10, 10) in do
x <= g

y <- g

p <- elements allPieces
return $ movePiece (x, y) P

play :: Int -> [Piece] -> IO [Piece]
play 0 ps = return ps

play [] = return []

play n ps = do

shot <- fire

let (hits, ps') = partition (\p -> shot “inside’ region p) ps
print hits

play (n - 1) ps'

module URL where
import Test.QuickCheck

input, output :: String
input = "http://alex.nl/age?input=25"
output = "http%3A%2F%2Falex.nl%2Fage%s3Finputs3D25"
-— For pass:
escape :: Char -> String
escape ¢ = case c of

"' —> "3A"

ARES SV

20 => "S3F"

="' —> "33D"

_ -> [c]
type URL = String
encodeURL :: URL -> URL
encodeURL [] =[]
encodeURL (x:xs) = escape x +t+ encodeURL xs

-— For excellent:

encodeURL' :: URL -> URL
encodeURL' = concatMap escape
—-— Some properties, many more are possible
prop model :: URL -> Bool
prop model url = encodeURL url == encodeURL' url
prop safe :: URL -> Bool
prop safe = all safe . encodeURL
where
safe x = x ‘notElem™ ":/?="
prop idempotent :: URL -> Bool

prop idempotent url = let url' = encodeURL url in url' == encodeURL url'

