EXAM
Introduction to Functional Programming
TDAS55/DIT440

DAY: 2018-10-31 TIME: 14:00-18:00 PLACE: "Lindholmen"-salar

Responsible: David Sands 0737207663 Will visit the exam rooms between 15:00 and
15:30, and again between 16.15 and 16.45]

Aids:
An English (or English-Swedish, or English-X) dictionary
Grade:
Completing Part I gives a 3 or a G;
Part I and Part II are both needed for a4, 5, or VG
This exam consists of two parts:
Part I (7 small assignments) Part II (2 more advanced assignments)
¢ Give good enough answers for 5 assignments ¢ You do not need to solve this part if you are
here and you will geta3 ora G happy with a 3 or a G!
e (Points on Part II can be counted towards e Pass Part I and one assignment of your
Part I if needed, but this is very unlikely to choice here and you will get a 4
happen in practice.) e Pass Part I and both assignments here and
you will geta 5 ora VG

Please read the following guidelines carefully:

e Begin each assignment on a new sheet

e Write your number on each sheet

e Write clearly; unreadable = wrong!

e Comments (if needed) can be given in Swedish or English

¢ You can make use of the standard Haskell functions and types given in the
attached list (you have to implement other functions yourself if you want to use
them)

¢ You do not have to import standard modules in your solutions. You do not have
to copy any of the code provided.

Good Luck!

Part1

Correct answers to 5 out of the following 7 assignments gives a pass on the exam.

1

Given the following function

t: Int -> [[Int]]
n|n<=0 =711
| otherwise = replicate n 1 : gl (n ~div™ 2)

What is the result of evaluating the following expression:
ql 4

You only need to write the answer. An answer with an incorrect type will be considered incorrect!

2

The following function which works a bit like 1ookup but returns a list of all the things found:

lookupAll :: Eq a => a -> [(a,b)] -> [b]
lookupAll key [] =11

lookupAll key ((k,v):kvs)
| key == = v : lookupZll key kvs
| otherwise lookupAll key kvs

For example

lookupAll "lucky" [("lucky",6), ("unlucky",7),("lucky",8),("beastly",666)]

gives [6,8].

Give a definition of 1lookupAl1l using just a list comprehension. You may use the equality operator (==) but
no other standard functions. You must not use recursion.

3

In this question you should define a data type to represent a ticket for an amusement park (e.g. Liseberg). Each
ticket has the following properties:

o A ticket is valid either for a child or for an adult; a child ticket states the age of the child.
e A ticket is either a season ticket or a day ticket; a day ticket states the date on which it is valid, and a season
ticket states the year for which it is valid.

In this question you have to define two things. Firstly define a data type
data Ticket = ...

using the following given types to represent dates and years:

type Age = Int
type Year = Int
type Month = Int
type Day = Int

and any other helper types that you find useful.

Your type should precisely represent the possible ticket types described above, and nothing more. For example,
an adult ticket should not include an age (because that is only for child tickets), and a season ticket should not
contain a date.

Secondly, give an example of a value of type Ticket which represents this year’s season ticket for a child aged
13.

exampleTicket :: Ticket
exampleTicket = ...

4

The following data type Expr represents arithmetic expressions with multiplication, addition, and subtraction:

data Expr = Num Int | Add Expr Expr | Mul Expr ExXpr
deriving (Eq,Show)

The data type Ex defined below also represents arithmetic expressions, but in a slightly different way:

data Ex = NumEx Int | BinEx Op Ex EXx

data Op = AddOp | MulOp
Define a function

convert :: Expr -> Ex

which converts from an expression of type Expr to the corresponding expression in the type Ex.

Hint: if your definition is not recursive then it is wrong.

5

Define a quickCheck property which relates the function lookup with the function 1lookupAll defined in
question 2.

Note: There is more than one meaningful property that relates these two functions, but you should not just
consider the special case when using 1lookup returns Nothing.

Note also that your property should never give an error for any inputs (because since the functions are correct,
that can only mean that the property is wrong!).

6

Suppose that you have a function guests :: DayNumber -> Int thaton a given day (a positive integer,
where 1 is the first day of operation of the park) returns the number of visitors to an amusement park, where

type DayNumber = Int

In this question the definition of the function guests is not important.

Consider the following functions:

closedDays, busyDays :: DayNumber -> DayNumber -> [DayNumber]

closedDays n m = [d | d <- [n..m], guests d == 0]
-- the days in the range for which the restaurant had no guests

busyDays nm = [d | d <- [n..m], guests d > 2000]
-- the days in the range with more than 2000 guests

These functions look very similar. The question has two parts:

1. Define a more general function
days :: (DayNumber -> Bool) -> DayNumber -> DayNumber -> [DayNumber]

such thatdays p n mreturns a list of the days in the range n to m for which the property p is true
(where p is a function of type DayNumber -> Bool).

2. Define closedDays and busyDays using the more general function days (and any small helper
functions that you find useful).

You are not required to write any comments or explanations, just Haskell code.

Write a QuickCheck generator

spam :: Gen String

which is a generator for a random email address such as "bob7@gmail.com", "alice99@hotmail.com",
or "dave@gmail.com". You should assume two Haskell definitions

names, emailProviders :: [String]
For example, we might have

names
emailProviders

[llalicell, Ilbobll’ lldavell]
["gmail", "yahoo", "hotmail"]

Note that these are just lists, not generators. Using these definitions together with the standard QuickCheck
functions (listed in the appendix) you should generate email addresses like the examples above, combining
names, email providers (all assumed to be . com) with zero, one or two digits after the name (so it should be
possible to generate all of the names in the examples above).

Part I1

You do not need to work on this part if you only want to get a 3 or a G (although a correct answer to part Il can be
used instead of a question in part I).

A decision tree is defined as follows:

data DTree = Decision Answer | O Question DTree DTree

type Question = String
type Answer String

Define a function
attributes :: DTree -> [(Answer,[(Question,Bool)])]

which builds a table from a decision tree, where for every answer in the tree there is list of the questions which led
to that answer, and whether the question was answered yes (True) or no (False).

For example consider the tree:

ex = Q "Is it Raining?" wet notWet
where wet = Decision "Take the bus"
notWet QO "Is it more the 2km?" (Decision "Cycle") (Decision "Walk")

Then attributes ex should give the answer (reformatted for readability):

[

("Take the bus",[("Is it Raining?",True)]),
("Cycle" ,[("Is it Raining?",False),("Is it more the 2km?",True)]),
("Walk" ,[("Is it Raining?",False),("Is it more the 2km?",False)])

]

You may assume that each Answer appears at most once in a given decision tree.

9

A maze is a collection of squares, each given by an x and a y coordinate, and some walls between squares. Each
wall is to the North, South, East, or West of a given square.

An example maze is given in the picture below where the thick black lines are the walls:

(0,0) § (L0} | (2,0

(0,1) § (1,1) (2,1)

(0.2} | (L2)

In this question we will represent a maze using the following types

type Maze = [(Position, [Direction])]
type Position = (Int,Int)

data Direction = N | S | E | W
deriving Eq

The maze pictured above can be represented as follows:

exampleMaze = [((0,0),[E]), ((1,0),[S]1), ((2,0),[]
((0,1),[E]), ((L,1),[1), ((2,1),[]
(

(0,2),01), ((1,2),[1)

[)
')
]

Note that the order of the elements in the list are unimportant. If there is a wall between to adjacent positions e.g.
(0,0) and (1,0), then it might either be represented by a wall on the east of (0,0), or on the west of (1,0), or both.
You may, however, assume that a position appears at most once in a maze.

A valid path in a maze is a list of zero or more positions which are in the maze, and where you can get from one
position to the next in the list by taking one step in a direction N, S, E or W, and where there is no wall in the
way.

Here is an example of a valid path in exampleMaze, and three examples of non valid paths:

goodPath = [(0,0),(0,1),(0,2),(1,2),(1,1)]
badpPathl = [(0,0),(1,0)] -- crosses a wall
badPath2 = [(1,2),(2,2)] -- goes outside the maze
badPath3 = [(1,2),(2,1)] -- needs two steps

Define a Haskell function

validPath :: Maze -> [Position] -> Bool

which checks whether the given path is valid in the given maze.

,SX STTe3} <— ,SX

1 < n

JO SX @sedD : SX = SX STTe3}

[[e]] <- [e] :: sTre?

,SX +4+ SX = ,SX 9I9yMm ,SX = sx 9T204Ao
W8ty fidwio :9poAoopnpard, I0xIS = [1 o104ko
[e] <- [e] :: aroho

(x 3eadax) u ayel X u o3edTTdex

[e] <- & <- 3ur : azeorrdax
SX:!X = SX 9I9YM SX = x 3eadax
[e] <—- & :: jeadax

(x 3) J ®@3e193T : X
[e] <- & <- (B <- &) ¢

X I 93eI93T
a3eI93T

sx (x z 3) I3 TPIOF (sx:x) z 3 TPTOF

z = [1 z 3 TPTOF

e <- [q] <- & <- (B <- q<-18®) :: TPTOF
(sx z J IpT0o3) X F = (sx:x) 2z J IPTOF

zZ = [1 z 3 ap1oZ

q <- [e] <- 9 <- (@ <- q<-18) :: IpTOoF
(1-u) ii sx = u i (sx:T)

X = 0 ii (" :x)

® <- 3uIl <- [e] :: (ii)

0 ((+1) 3suod) ap1oF = yabust
jur <- [e] :: y3buat

osTed = (") TInu

oniy = [1 TTnu

Toog <- [®©] :: TTNnU

SX 3TUT X

[1

(sx:x) 3TUT
[x] 3TUuT

SX

[e] <- [e] :

(sx:7) TTR3}
3TUT ‘TTE3

SX 3seTl = (sx:™) 3ser
X = [x] 3seT

xu Aluxvvmm:
e <- [e] :: 3serT ‘pesay

F dew ° 3edouod = J dep3zeouod
[q] <- [e] <- ([q] <- e) :: dewzeouod

ssx []1 (++4) IPTOF = SSX 3BOUOD
[e] <- [[e]] :: 3eouoo

[xd ‘sx —>x | x 1 =sx d 193713
[e] <- [e] <- (Toog <- ®) :: IS3ITTF

sx sk (:) IPTOF = SK ++ SX
[e]l <- [e]l <- [e] :: (++)

[sx —> x _ x 3] = sx 3 deu
[q] <- [e] <- (q <- &) :: deu

S3STT UO SUOT3OoUNF ——

(d pus) (d 3s3) 3 = d 3 Axzanoun

(0 <- (q@ “B)) <- (0 <- q@ <- ©) :: KAxanoun
(K 'x) 3 = K x 3 KRxando
D <-— q<- & <- (0 <- (q “©)) :: AKzano

(e'q) = (q’e) dems

(e’q) <- (q’e) :: dems
K = (A’x) pus

q <- (q’e) :: pus

X = (K'x) 23s7

e <- (q’e) :: Is¥

sited uo suor3ouny —-—

ST sagiAep3ed
saqfewizeo

[sT -> % 3snp | X]
[e] <- [e aqiew] :

e 3snp
buTty3zoN
e aqlew <- [e] :

[e]
[1
[e] <- © aqdlew :

(T:e) o2qhkeroIasSTT
[1 eqhenorasTT
aqAeworasTT

(e 3snr) 3stIOLaqARW
butyjzoN 3sTTOLSqARU
3sTT0LoqieW

e = (e 3snp) 3snpwoxd

e <- & aqlew :: 3snpuoxy
3snpsST * jou = PUTY]ONST
osTed = BPUTYION 3ISNLST

aniL = (e 3snp) 3snpst

To0g <- b aqhew :: BUTYIONST ‘3SnpLsT

e asnp _ PUuTylON = e oghel ejzep
aqfe uo suorjzouny —-—

aniL = asTed 30U
osTed = anig 3ou

TOoOg <- TOOg :: jou

X = x osTed

aniL = - 77 oanig,

osTed = T ®y 9sTed

X = X 8% onig

Toog <- Tood <- Toog :: (]]) “(s%)

snig | osTed = Tood e3ep
SToOg UO SUOT3OoUNF ——

X J = X s 3

q<-®© <— (g <= 1®©) :: (s)

x K 3 = K x 3 dr13

D<-P<-q<- (0 <—q<—18) :: drry
(x B) 3 <= x \ = b - 3

0 <—-®<- (qQ<-19) <- (0 <=q) :: (*)
X = ~ X 3suoo

P <-q<-© :: 3suoo

X = X pT

e <- B 2 pT

sSuOT3OUNy UO SUOTIOUNF ——

(Ix F) uanjzax
Tw —> IX op = TW F WIFTT
I w<- T W <— (I <- TB) <= (w peuow) :: WIFTT

() uanizsx
sx odousanbas op

= sx oouonbes
() w <— [e w] <= w peuow ::

“eouanbas
(sx:x) uanjax
b —> sx
d -> x op = b d suoow aaxaym
([] uanjysx) suodw IPTOF = oousnbss
[e] w <— [e w] <= w peuop :: aouanbas

suor3ouny OoTpPRUOW ——

usA® ° 30U = ppo
0 == ¢ ,Wdx, U = u ua24d
100g <- B <= (b TEBIbBO3UI) :: ppo ‘uaaa
suoT3ouny [eOTISWNU ——
g <- © <= (g Teabsjur) :: I0O0TI ‘BuTrTT®O
q <- © <= (g Teabsjul) :: punox ‘sjeoduniiy

2I9yMm ® oevIJIedy <= (e TeuoTideid ‘e Teay) Sseld

e <—®© ue3 ‘soo ‘urs
e <— B i3 3abs ‘boT ‘dxas
ax9ym ® buTrleoTd <= (e TeuoT3ioeri) sSseld

e <— TeuoTley :: TeuoT3eyuoIF
v <— B <—®© (/)
2I9ym B TJRUOTI}ORII <= (e wnN) Ssefd
I9bo3url <— ®© ¢ I9bo3urOo]
e <- B <—-® pou ‘ATpP

e <-© <—® @ wax ‘j3onb
oa9ym e TeabojuIl <= (e wnug ‘e Tesy) sserd

TeuoT3ey <- © 3 TeuoT3eyol
ox9ym e TedY <= (e pPI0 ‘e wnN) Sserd

e <- Isbajur I9bojuTwoIF
e <- ® umubTts ‘sqe
e <— ® 23eboau
B<-® <—® 1% (x) (=) “(+)

ox9ym e wunN <= (e moys ‘e bm) ssero

e <- B <—® uTtw ‘xewu
Toogd <— © <— ® :: (<) ‘(=<) ‘(=>) ‘(>)
aa9aym e pi0 <= (e bxg) ssero

100d <— © <= ® 1t (=/) ‘(==)
aaaym e by ssefo

buTtizs <- ® :: Mmoys
2I9ym e MOUS SSserd

sosseTo 9dA3 piepuels ——
{-
peUON * TOI3UOD IeyD e3ed aqlen-eied

1STT PlPg SPNTSI4 :SoTnNpow T[O3SPH pILpuels
9y3 WOIJ SuOTIOUNI pa3OdT[OS JO 3ISTT © ST STYL

-}

() 01 <- burils <- y3edoarrd 9T TJ93ITIM
burIls 0I <- Y3IBdoTTd oTTdpEDI
burais o1 :: aurT3ob

() o1 <- burazs :: urarzsynd ‘a3sand
uorzouny OI [nyosn —-—

r1930wesed 9zTS ay3x —-—
uo puadap 3py3 sIO03IDUSH 3ONIISUOD ——
e usp <- (e usH <- 3UI) :: pPIZIS

cy3busT usATb O9y3z JO 3ISTT © So3pIdUSH ——
[e] usd <- © U9 <- 3JUI :: FJOIO03DdA

*y3busT wWopueI JO ST P S93RIBUDH ——
[e] usp <— © usn :: JOISTT

*SenTeA U9ATH 8Yy3 JO SUO S230IBUDH ——
e usp <- [e] :: sjuswore

*uUOT3INQIIISTP WopueI pa3ybTam ——
y3TM srtojersusb JO 3STT WOIF SSSO0YD ——
e usp <- [(e usp ‘3ur)] :: Aousnbaxy

sIzo03eI9U8b UDATH ©9Yy3z JO 9UO sesn ATwopuey ——
e usp <- [e uanp] :: yoauo

*9buPI SATSNTOUT —-—
USATH 8yl UT JUSWSTS WOPURI © S93BIdUSDH ——
e usp <- (e ‘) <= & wopuey :: asooyo

sxoaypyoTnb Aq pesn ‘A1e13TqQIV SSPTO UT ——
o2dA3 © jo sanTea J10F IJO03PIBUSDH OY3 ——
e u9p <= b Axexzrqay :: Aiexzrqae

¥08yDyOTNd *3SOL WOIF ——
suor3ouny TNyosn swosS JO S8INFRUBTS ——

Iey) <- 3JUI :: ayo
U <- JIBYD :: pIO

.€, == £ 3THIQOLIUT ——
Ieyy <- Ul :: 3TBTgOLIUT
8 == ,8, JUIOLITHIP ——
JUT <— Jey) :: JUIOLITBIP
.Z, == ,Z, I2MOTO3 ——

, ¥, == ,e, xaddnoi ——

Ieyy <- aeyd :: gamoToz ‘xaddnoiz

[xeyp] = butaas odiz
IeyD UO SUOTIOUNF ——

SX X 3JI9SUT:K OST® sx:4A:x uayzx £ => x 3JT

= (sx:£) x 3aesut
[x] = [1 x 3xesut
[e] <- [e] <- & <= (e pao) :: 3I9SUT

[1 3xosuT apToF = 3I10S
~m~A|~m~An«mvuov"" uuom

K osioA91 ,JOXTFIOAJST,
X 9SI9A9I = A X JOXTIINSST
roog <- [e] <- [e] <= e bg :: JOXTFFNSST
sA SX JOXTJOIdST 3%

A == = (sK:K) (sx:X) JOXTIDadST
osTed = [1 T JOXTJFOIdsT
oniy = - [1 FoxTFoagst
100g <- [P] <- [B] <= & B :: FOXTFOI4ST

sx (x ba) ueds = (sz’sk) aasaym
sz ba Agdnoxb : (sh:x) = (sx:x) bs Agdnoib
[1 = [1 ~— Agdnoab

[[e]] <- [e] <- (Toog <- & <— ®) :: Agdnoxb

(==) Agdnoab = dnoib
NNmNNAu~mNAnmum““ msoum

(sx (d * jou) x037TF ‘sx d 193TT3F)
= sx d uoTr3T3ixed
([e]’[e]) <- [e] <- (Toog <- ®) :: wuor3zrzaed

[[9’c]’[s’z] [p“'T]] == .
[[9’c“p]1“[c*z“T]] @sodsueiz ——

[[e]] <- [[e]] :: asodsuex3y
[p‘0°c’0“z’0’1] == [p’c’z’1] 0 ®siadsiazur —-—
[e] <- [e] <- & :: asxadsaazur

[s ,wo19, X ’‘Sx —-> X]

| x sk sx 30esIojut
[e] <- [e] <- [e] <= e bF :

309s8I93UT

(sx \\ S£) ++ sx sk sx uoTun

[e] <- [e] <- [e] <= e b7 : uortun
(939T9p dTT1JF) TPIOT = (\\)
[e] <- [e] <- [e] <= e bz :: (\\)

sx K ©39TOp : X OSTd® SX uaylx A == x 3JT
= (sx:x) K 939Top
= [1 £ =o3a1ap
[e] <- [e] <- & <= & bg :: o39719pP

[£ =/ x 'sx -—> K | £]1 qnu : x
= (sx:x) qnu

[1 = [1 gnu
[e] <- [e] <= e bg :: qnu
([101) ((sq:q‘se:e) <- (sq’se)~ (q‘e)\) ap1oF
= drzun
([q]l“[e]) <- [(q’e)] :: drzun
[= T 7 7 uaTmdrz

sq se z yatmdIiz : g e z =
(sq:q) (se:e) z yaztmdrz

[0]<-[q]l<-[e] <- (9<-q<-E) :: yarmdrz
(*) yatmdrz = drz

[(q’e)] <- [q] <- [e] :: drz

SX X UTW TPIOF = (SX:X) wnwIiutw

LIs11 Aidwo swnwirumuropnalg,, Ioxias = [] wnwruTw

SX X Xeuw TPIOF = (SxX:ixX) wnwixeu

WI81] Aidwo swnwirxewrapnald,, Ioxxe = [] wnwrxew
e <- [P] <= (e px0o) :: wnwrurw ‘wWnwrxeu

T (%) TPTOF = 3onpoad

0 (+) TPTOF = uns

e <- [e] <= (e wny) :: zonpoxd ‘uns
sAx Koy dnjoO0T = OSTIMIaYO
K 3snp = X == Aoy

(sAx:(K’x)) Koy dnyooT

butyzoNn = [1 Aoy dnyooT

q aqfew <- [(q’e)] <- & <= (@ Bbg) :: dnsyoor
(x =/) 112 = X weTH3ou

(x ==) Aue X WaTd

100g <- [P] <- © <= (© b7m) : waTg3ou ‘waTd

d dew ° pue = d 11e

d dew * 10 = d Aue

roog <- [e] <- (T100g <- ®B) :: TTe ‘Aue
asTed (||) aproz = Io

eniy (3%) IPIOF = pue

roog <- [roog] :: I10 ‘pue

[1 ((:) dt13) TPTOF = os1an01

[e] <- [e] :: osI2403

,edeo edeq ede, == _
[,edeo, /, edaq, /, ede,] spiomun ——
,u\edeou\edequ\ede, == —
[,edeo, /, edaq, ’, ede,] ssurTun ——
bura3zs <- [burx3zs] :: spaxomun ‘saurTun

[,edeo, /, edaq, ’, ede,] == _

.edeo u\edeq ede, spiom ——
[,edseo, ’, edaq, ’ ede,] == —_
. u\edeou\edequ\ede, saUTT —-

[buTta3s] <- butrazs :: spaom ‘saurT
(se d srtymdoap ‘se d oTTymayel) = se d ueds
([e] “[e]) <- [e] <- (Toog <- e) :: ueds

SX = 9STMIaY3lo

,sx d o1Tymdoap = x d
(,sx:x)psx d srTymdoap
[1 = [1 d sTTtymdoap

[1 = sstmisyilo

sx d oTTyM®yel : X = x d
(sx:x) d eTTyMeyeRl}
[1 = [1 d sTTymayel

[e] <- [e] <- (Toog <- B) :: orTymMdOoIp ‘oTTYMOyE3

(sx u doap ‘sx u ayel) SX U 3y¥3TTds

([e]“[e]) <- [e] <- 3ur : 3v3rTds
sx (1-u) doap = (sx:7) u doip

[1 = [1 doap

sXx =0 => U | sx u doap

sX ([-u) @je3 : X = (sx:x) u ayel

[1 = [1 ™ eoye3

[1 =0=>u| u el

[e] <- [e] <- 3ur :: doap ‘axe3

