EXAM
Introduction to Functional Programming
TDAS555/DIT440

DAY: 2017-10-28 TIME: 14:00-18:00 PLACE: SB Multisal

Responsible: David Sands 0737207663 [Will visit the exam rooms between 15.00 and

15.30]
Aids:
An English (or English-Swedish, or English-X) dictionary
Grade:
Completing Part I gives a 3 or a G;
Part I and Part II are both needed for a4, 5, or VG
This exam consists of two parts:
Part I (7 small assignments) Part II (2 larger assignments)
¢ Give good enough answers for 5 assignments ¢ You do not need to solve this part if you are
here and you will geta3 ora G happy with a 3 or a G!
e (Points on Part II can be counted towards e Pass Part I and one assignment of your
Part I if needed, but this is very unlikely to choice here and you will get a 4
happen in practice.) e Pass Part I and both assignments here and
you will geta 5 ora VG

Please read the following guidelines carefully:

e Begin each assignment on a new sheet

e Write your number on each sheet

e Write clearly; unreadable = wrong!

e Comments (if needed) can be given in Swedish or English

¢ You can make use of the standard Haskell functions and types given in the
attached list (you have to implement other functions yourself if you want to use
them)

¢ You do not have to import standard modules in your solutions

o Tangentbordet dr knepigt, men oftast har jag alt under ctrl.

Good Luck!

Part1

You have to complete 5 out of the following 7 assignments to get a pass on the exam.

1

Given the following function

gl :: [Int] -> Int

ql [] =0
ql [x] =X
gl (x: :xs) = max x (gl xs)

what would the following expression give in ghci?

gl (map abs [-1,-6,-5,7])

2

In this question you should assume that you have a function rainfall which computes the rainfall in
Gothenburg for a given week (where weeks are numbered from 1 and upwards)

type WeekNumber = Int
rainfall :: WeekNumber -> Double —-— assume this function exists

A week is considered to be “dry” if the rainfall in that week is less than 5.

Complete the definition of the following function:

dryWeeks :: WeekNumber -> Int
dryWeeks n | n <1 =0
—- (complete this definition)

such that dryWeeks n (whenn > 0) gives the number of dry weeks in the range 1 up to n.

Your solution must be recursive. Solutions that do not use recursion will be considered incorrect. Solutions which
always return the value 0 (whether intended as a joke or otherwise) will also be considered incorrect!

3

In this question you should define a data type to represent a bus ticket of a certain kind described below.

A bus ticket is either a single ticket (a ticket valid for a certain number of minutes) or a period ticket (a ticket that
lasts a number of whole days). A single ticket is marked with the date and time when it expires. A period ticket is
marked with the date when it expires.

You should use the types Date and Time given below (although the details of their definitions are not important
for this question):

type Year = Int
type Month = Int
type Day = Int
type Hour = Int

type Minute = Int

data Date = Date Year Month Day
data Time Time Hour Minute

Your task is (only) to complete the following definition:
data BusTicket = ...

Note: you do not have to define any functions, or write any deriving

4

The following data type represents arithmetic expressions with multiplication, addition, subtraction and a variable
X:

data Expr = X | Num Int | BinOp Op Expr Expr
deriving (Eg,Show)

data Op = Add | Mul | Subtract
deriving (Eq,Show)

Although this data type can represent subtraction, it is not really needed since an expression such as, for example,
100 - Xcanbewrittenas 100 + (-1) * X.

Define a function
removeSub :: Expr -> EXpr

which removes all subtraction operators in an expression by replacing them with a combination of addition and
multiplication as in the above example.

For example, 100 - X would be represented by the expression
ex4 = BinOp Subtract (Num 100) X

Then removeSub ex4 should give
BinOp Add (Num 100) (BinOp Mul (Num (-1)) X)

Your definition should only remove the subtraction operators. It should not attempt to simplify or evaluate the
expression in any way.

Hint: a correct solution must use recursion for every sub-expression in order to remove all subtraction operators.

5

The standard function isPrefixOf tests whether a given list is a prefix of another. For example the following
expression is true:

prop isPrefixOf = "hell" " isPrefixOf~ "hello"
&& [] “isPrefixOf™ [1,2,3]
&& [1,2] “isPrefixOf~ [1,2]
&& not ([2,3] “isPrefixOf~ [1,2,3])

Define a quickCheck property

prop_take :: Int -> String -> Bool

which relates the function isPrefixOf with the function take :: Int -> [a] -> [a]. Your
definition must use the two arguments as part of the test (so it is not OK to write a definition like
prop isPrefixOf which just gives a fixed number of examples).

Consider the following code:

data Suit = Hearts | Clubs | Diamonds | Spades
deriving (Eqg,Show)

data Rank = Numeric Int | Jack | Queen | King | Ace
deriving (Eg,Show)

data Card = Card Rank Suit
deriving (Eg,Show)

isRed, isDiamond :: Suit -> Bool
isRed s = s == Hearts || s == Diamonds

isDiamond s = s == Diamonds

isAce, isLow :: Rank -> Bool

isAce r = r == Ace
isLow (Numeric n) =n<5
isLow _ = False

lowDiamonds cs [Card r s | Card r s <- cs, isLow r && isDiamond s]

redAces cs [Card r s | Card r s <- cs, 1isAce r && isRed s]

lowRedCards cs [Card r s | Card r s <- c¢s, isLow r && isRed s]
The last three functions in this code contain a lot of “cut-and-paste” repetition. Define a function

selectCards :: (Rank -> Bool) -> (Suit -> Bool) -> [Card] -> [Card]

which generalises these three functions, so that the following property holds:

prop_selectCards cs = lowDiamonds cs == selectCards isLow isDiamond cs
&& redAces cs == selectCards isAce isRed cs
&& lowRedCards cs == selectCards isLow isRed cs

Note: to check such a property with quickCheck we would need to define generators for cards. You do not need to
worry about that.

Give the definition of a QuickCheck generator

quadlist :: Gen [Integer]

for lists of Integers, where for every list generated, the length of the list is a multiple of 4. L.e., the generated lists
contain 0 numbers, or 4 numbers, or 8 numbers, or 12 numbers, and so on. Hint: QuickCheck function
vectorOf :: Int -> Gen a -> Gen [a] which generates a list of a specific length, as well as the
generator arbitrary may be useful, but replicate or sized should probably not be used.

Hints: (i) don’t make the common mistake of trying to apply a function of type Integer -> a to something of
type Gen Integer, and (ii) don’t forget that you can work with things of type Gen Integer using do-
notation.

Part 11

You do not need to work on this part if you only want to get a 3 or a G (although a correct answer to part Il can be
used instead of a question in part I).

8

The following definitions represent a shape composed of coloured squares arranged in a grid. This can be
modelled as a list-of-lists, one for each row:

data Shape = S [Row]
type Row = [Square]

type Square = Maybe Colour
data Colour = Black | Red | Green deriving Eq

For example, a black L-shape might be represented by the following:

lshape = [[x,0]
[X,0]
,[x,%x]] where x = Just Black
o Nothing

An alternative way to represent a shape is to use a coordinate system. Each coloured part of the shape is
represented by a coordinate of a position in the grid, and the colour at that coordinate:

type AltShape = [Point]
data Point = P Colour (Int,Int) deriving Eq

In this representation, the L-shape above could be written:

altLshape = map (P Black) [(0,0),(0,1),(0,2),(1,2)]

Note that the alternative definition is not exactly equivalent, as does not give us a way to represent the blank
squares; for example, all completely blank shapes, whether large or small, will be represented by the empty list.
We will not worry about this minor difference in this question.

Define a function

fromShape :: Shape -> AltShape

that converts from a Shape to an AltShape, so that for example

fromShape lshape == altLshape

If your solution produces the correct points but listed in a different order that is also acceptable. You may assume,
if necessary, that every row in the original shape has the same number of elements.

Consider the following definition of a binary tree

data Tree a Branch (Tree a) a (Tree a)

| Leaf
deriving Eq

When using a tree to represent data it is often good if the tree is balanced, which means that there are roughly the
same number of things in the left sub tree as there are in the right sub tree, for every branch in the tree.

We define the skew of a tree to be a measure of how unbalanced it is. Let us first define the skew of a branch in a
tree: the skew of a branch (a non-negative number) is the difference between the number of things in the left sub-

tree compared to the right sub-tree. Now we define the skew of a tree to be zero if the tree is a leaf, and the largest
skew of all the branches in the tree otherwise.

For example, consider treel :: Tree String
treel = Branch (Branch Leaf "left" Leaf) "top" Leaf

The skew of the top branch is 1 and the skew of the left branch is 0, so the skew of treel is 1. Consider
tree2:

tree2 = Branch (Branch Leaf "left" (Branch Leaf "lr" Leaf)) "top" Leaf

there are three different branches, with skews 2, 1 and 0, respectively. So the skew of the whole tree is the
maximum of these, namely 2.

Define a function
skew :: Tree a -> Int

which computes the skew of a tree. You may compute the skew in any way you like (i.e. it should be equivalent
to the definition given above but it does not have to be defined in the same way).

SXS|el<— SX :
0 <- I

JO Sx ased SX = sX s|re}

[[e]l <-[e] = sirey

SX 4+ SX = ,SX alaym SX = SX 9J9A0

JIs1) Adwe aphoapnplid Lol = 0 8pAd

[e] <-[e] = TN

(x1eadal) uayer = x u aeandal

[e] <—e<—1w :: areo|dal

SX: X =SX alaym SX = X Jeadal

[e] <—e:: jeadal

(x 4) 4 @1R401 : X = X}oelal

[e]<-e<-(e<-v):: arelall

sx(xz§)} _c_e = (sx: X) Z } |p|o}

1} Z }p|o}

e<-[q <-e<- ?X-QA e): |pjo}

(sx z 4 pjoy) VC = wa : X) Z 4 1p|0}

0 zpjo}

g<-[e]<-q<- SA g<-%€): Jpjo}

(T-w)iisx= uiji(sx:")

x= 0ii (%)

e<— W< [e] (i)

0 ((+T) 1su09) Jpjo} = ybuaj

W <—[e] [IE]]

asfeq = C: nu

anll = 0 qnu

joog <- [e] :: JInu

sXuul X= (sx: X) Nul

0 = [x] au

sx= (sx: T)el

[e] <-[e] Hur ‘rey

sxise|= (Sx: T)ise|

X = [x] 1s¢|

X = (: x)peay
e<—[e]: 1se| ‘peay

} dew " 1@oU09 =} deedu0d
[a] <- [e] <= ([g] <-®) :: depreouod

ssx] (++) Ip|0} = SSX 122U0D

[e] <- [[e]] :: yeouod

[xd‘sx—>x|x] =sx d oy
[e] <- [e] <- (joog <-) :: 1oyl

sxsA(:) 1p|0} = SA ++ SX

[e] <= [e] <= [e] = (++)

[SX —> X | x4] =sx j dew

[a] <- [e] <- (g <-®) :: dew

SIs|| Uo suonouny ——

(dpus) (disy)) = djAunoun
(0 <- (g ‘e)) <- (9 <= g <€) = Andun

AX)y = AxypAund
d<-(Q<-e<-(9<-(q‘e)):: Aund

(e‘q) = (q‘e) dems

(e‘q) <- (ge) :: dems
A = (A'X) pus
g<-(qe) pus
X = (A'X) 18}
e<-(qe): 15}
sired uo suoiouny ——
S| —>xisne | x] = s| sagAe e
[e] < [e aghen] : sagAeN1eo
eisnt = :
BuiyioN
e agheN <- [e]
[e] = (ei1snr) i1sI7o1aghew
[= buiyloN 1s108gheWw
[e] <— e aghen : 11701 8gAew
e = (eisnr)isncwoly
e <— e aghe 1SNCWOY
1ISnesl T 10U = BuiyioNs!
asfed = BuiyioN 1sncsi
enil = (eisnp) isnesl
|00g <— e agAeN :: BuiyionsiIisnesi

eisnr | BulyloN = e agAey elep
agAe|\ uo suonouny ——

anll = as|e4 jou
asred = ani] 1ou

joog <- |oog :: 10U

X = X || asred

anil =] enuL

asled = 9% as|e4

X = X 9% anll

loog <- |o0g (N ¢s7)

ani] | asjed = joog erep
s|00g Uo suonouny ——

X}= X$)

e<— (Q<- ®) = (%)

XAy=Axydy
J<-B<-Q<-(0<-Qg<-¢¥):: diy

(xB) J <— X\ =

J
e)<- (0<- Q) =)

X= XISuod
B<-(<-€l 1SU0D

X = X pI
e<-®l pi
suonouny Uo suoNdUNy ——

(TX §) uimai
TWw —> TX op = TW AW
JW<-Te W <— (1 <— TB) <= (W peuoi) = M

() wimai_
sx aouanbas op = SX _aouanbas
() w <-[e w] <= w peuo :: ~oduanbas

(sx : X) uinjal
b —> sx
d->xop =b d suoow asaym
(@ uinjal) suodw Jpjoy = dduanbas
[e] w <—[e w] <= w peuo :: 8duanbas
suonouny dIpeUOW ——

USAS " J0U = ppo
0==¢ ,wal, u= U uana
j0o0g <- e <= (e [esbay)) : ppo ‘uana

suonouny eaLBWINU ——

q<- e <= (q [esbouy) :: J100]} ‘Buniad
q<- e <=(qelbay) punou ‘ayeauns)
alaym e oel{[eay <= (e [euondeld ‘e [eay) sse|d
e<—- B uej ‘sod ‘uIs
e<— B ubs ‘6o) ‘dxa
alaym e mc_umo_u_ <= (e [euonoeld) sseo
e <— [euoney [euoleywoul}
B<—- B<- B 0]
alaym e _m:o:oEu_ <= (e wnN) ssep
J8boul <- e JETEII[0)]
e<- B B oI pow ‘AIp
B<—- B<— ®B wai yonb
alaym e _EmmE_ <= Am wnu3 ‘e [eay) sseo
[euoey <- ® [euoneyol
alaym e _mww_ <= (e pIO ‘e wWNN) Sssed
e<— JELE [V Jabayujwouy
e<— B I wnubis ‘sqe
B<- B arebau
e<- B<— B I () ‘(=) '(+)
alaym ' wnpN <= (e moys ‘e b3g) ssepo
B<- B<- ® ulw ‘xew
jopog<- e<- ®B (<) ‘(=<) (=>) ‘(>)
alaym e plO <= (e b3) ssep
jopog<- e<- ®© =) ‘(=

alaym eb3 ssep

fums <- ® 1 moys
2Iaym B MOYS Ssse|d

sasse|o adA) piepuels ——
{-
peUOoN‘|j0Au0D Jeydereq aghen ereq
1SIT"EeleQ 3pNn|did S8|NPOoW ||9)SEH pJepuels
BY} WoJy suonduny pajoalas Jo 1si| e SI SiyL

-}

() Ol <- Bums <- yredajid ;= djI4aM1Mm
Buis Ol <- Yreda|i4 1 8|idpeal
Bums Q1 :: aumab

() oI <= Buns :: uasInd ‘nsind
uonouny Of INasnN --

"1a18wesed azis ay} ——
uo puadap rey) sioresauab 1oNSU0D ——
B U9D <— (B U39 <- U|) :: pazIs

‘yibua| uanib ay} Jo 1sI| e saelaud) ——
[e] uao <— e ua9 <-1u| :: JOI01D8A

‘y1bus| wopuel Jo 1si| e sajelauss ——
[e] ue <-e ua9 : JOIsI|

‘sanfeA uaAIb ay JO BUO SarelaudD) ——
e U39 <- [e] :: siuawala

‘uonnquisip wopuel payyblom ——
Unm sioyesauab Jo 1si| Wolj S8Sooyd ——
B U9 <- [(e uao “uj)] :: Aouanbauy

sJo1elauab uanlb ayl Jo BuOo sasn Ajlwopuey —
B U89 <- [e ua9)] :: Josuo

abuel aAISNoUl ——
uanib 8y} Ul JUBWIS|S WOpPURI B S8jeIaud) ——
e U99 <- (B ‘B) <= e wopuey :: asooyd

XoayDainb Aq pasn ‘Arenigly ssepo ul ——
adA) e Jo sanjen 1oy} Jojelauab ay) ——
e u99) <= e Arenigly :: Arenigre

%09YD¥oINDISa | Wol) ——
SuUOoIdUNY |NJBSN BWOS JO sainreubls ——

JeyD <— | ayo
| <- Jey) :: pio

£, == g ubigoul ——
Teyd <1y ubigo Ll

== .8, ujo1ubIp —-
I <- Jeyp ::ujo1ubip

Z, == Z. 1amo701 ——
V. ==k, Jaddno} —
rey) <- Jey) :: 1amoo} ‘1addnoy

[teyD] =bus adhy
JeyD uo suonouny ——

sxxuasul: A 8sj@ sx:A:x uay A=>Xx Ji
= ﬁwx : A) x Hasul
[x] : X Jasul
[e] <-[e] <-e <= om pIO) i uasul

[sA

[e]

(g-n

1] 1Jasul Ip[o} =
[e] <- el <= (e p10O) :

A as1anal Joxuaidsl,

1os
1os

X 9SJanal = A X JOXINSSI

joog <- [e] <-[e] <=e b3 :

SA sx JOXyaids! 979
==X =(sA: A)(sx:
asleq = 0 _
onil = 1

j0og <— [e] <-[e]l <=e b3 :

sx (x ba) ueds = (sz‘'sA) aiaym

joxignsst

X) JOXualids!
~ Joxya1ds!
JOXyaids!
Joxyaids!

sz ba Agdnoib : (SA: X) = Amx : X) ba Agdnoib

I 0

~ Agdnoib

[Fe]] <= [e] <= (j00g <— e <- ¥) :: Agdno.b
(==) Agdnoib = dnoib

[[ell <-[e] <=e b3

(sx (d " j0u) Eu_c

dnoib

‘sx d Jayy)

(le]'fe]) <- [e] <- (joog <—®) :: uonired

loellsel vt == --
[[o's'v]‘[g ‘2 T]] @sodsuen ——

[[e]l <~ [fe]] :

[F'o'e'0'2'0'T]
[e] <-[e] <-®:

RIETES X ‘SX —> X | X

asodsuel;

== [¢'e'2'T] 0 @ssadsIaul ——

asJadsiaul

= sA sx 109sI91Ul

[e] <- [e] <- _m_ <=® cm_ : 109sIa)Ul
(sx\\ SA) ++ sx = sA sx uolun
[e] <-[e] <-[e] <=e b3 :: uolun
Amuw_wv diy) 1pioy = (W)
<- [e] <= [e] <=eb3 (W
SX A 819|9p X 8sj@ sx uay A==x JI

= (sx: X) A a19|9p
1 = 0 Aaweep
[e] <-[e]<-e<=e b3 919]9p

[A=/x‘sx—>A|A] qgnu X
= (sx: x)qnu
0 = 1 gnu
[e] <-[e]<=eb3: gnu

)((sa: g'se: e)<- (sq' mmv (ae)\) 4pjo}
dizun
(a)'fe]) <- [(a'e)] = dizun
0 = 77T yimdiz
sq se z yupdiz gez =

(sq: g)(se:) zyumdiz
[0]<-[a]<-[e] <- (0<-0<-®¥): yumdiz
() yumdiz. = diz
[(a'e)] <-[a] <-[e] :: diz
SX X UlW [p[o} = (SX : X) wnwiuiw
511 Adwe winwiuiwrspnpld Jdous = | wnwiuiw
SX X Xew [p|o} = (sx : X) wnuwixew

JS11 Adwe :winwixewrapnpid JJous = [wnwixew
e <- [e] <= (e pJO) :: WnwiulW ‘wnwixew

T ()P0} = 1onpoud
0 (+) Ipio} = wns
e<-[e] <= (ewnN):: 10npoud ‘wns

sAx Aoy dnxoo| = asimiaylo |
Aisnp = x==4Aay |

(sAx : (A'x)) Aoy dnxo0|

BuipoN = [] Aoy dnxoo)

g aghen <- [(qe)] <-e<=(eb3):: dmyoo|
X=)Ie = X wa|3iou

(X ==) Aue = X Wad

joog < [e] <—e <= (e b3):: wsFiou ‘wale
d dew " pue = dje

ddew 1o = d Aue

joog <- [e] <- (joog <-®) :: e ‘Aue
asfed (|) ipios = 1o

aniL (%79) Iplo} = pue

joog <- [j00g] :: 10 ‘pue

0 («:) duy) [ploy_ = aslanal
[e] <-[e] :: asianal

.edad edaq ede, == —_

[edas,‘ edaq, ede,] wEO>>c: —_
Juedasuyedaquyede, == ——
[.edas, edaq, ' ede,] sauljun ——
Bus <- [Buiis] :: spjomun ‘saulun

[edas, ’ edag, ' ede,] == —
Jedao u\edaq ede, spiom ——
[edas, edaq, ' ede,] == —
LJu\edasuyedagu\ede,, saul| —
[Buns] <- Buis ;1 splom ‘saul|

(se d ajiymdoup ‘se d ajiymaxes) = se d ueds
(Te] ‘[e]) <- [e] <- (joog <- ®) :: ueds

SX = asIMmIaylo |

sx d ajiymdosp = xd|
(sx: x)@sxd ajymdoip
[= [dapmmdoip

[= asimIay1o |

sx d ajiymaxel X = xd|
(sx : x) d ajiymaxer

1 i

[e] <- [e] <- (jo0g <- & alymdoulp ‘aliymaiel
(sx u doup ‘sx u axes) SX U Iyds
(lel'e]) <- [e] <=y = wHds
sx (T-u) doip = (sx: T)udoaip
1| = [~ doip
sx =0=>u| sxudoip
sx (T-u) axer : X = (sx: Xx)uaxe
[= 0_" om@
1 =0=>u] u axel
[e] <-[e] <— 1wy : doup ‘ayel

