
Answer Key

1. General Understanding (10 points)

(a) What is the relationship between a method’s throws clause and that checked ex-
ceptions the can be thrown during the execution of the method?

(b) If a non-static field of a class A is declared protected, where might it be accessed?

(c) What is the difference between start() and run() in the context of threads?

(d) What value of which type does read() return to indicate the end of a stream?

(e) Describe the difference between functional and structural testing. (Two sentences
may suffice.)

Answer:

(a) In a method’s throws clause you have to declare all checked, uncaught excep-
tions which might be thrown during execution of the method.

(b) In the class A itself, in all subclasses of A, and in all classes that belong to the
same package than A.

(c) run() executes the thread, and the thread is finished when run() returns.
start() only starts the execution of the thread, and returns immediately, re-
gardless of how long the thread runs.

(d) The int value −1.

(e) Functional testing is exclusively performed on the basis of a unit’s specification
(such as a description of the input/output relation). Structural is performed by
properly taking the implementation into account.

2. Interface Queue (10 points)

A Queue is a data structure where new elements are always added at the end, while
elements are still only taken out at the front. This is like a queue of people waiting in a
shop: they can only enter the queue at the end (the queue’s tail), and the queue only
gets smaller when the first person of the queue (the queue’s head) is served. A queue
is sometimes called First-In-First-Out (FIFO) data structure. Here is the interface for
a queue of integers:
public interface Queue {

/∗∗ append i at the tail of this queue and return i ∗/
public int enqueue (int i) ;

/∗∗ remove the head entry of this queue and return it ;
∗ throw a RuntimeException , if the queue is empty ∗/

public int dequeue () ;

/∗∗ return the head entry of this queue ; throw

1

∗ a RuntimeException , if the queue is empty ∗/
public int getFirst () ;

/∗∗ return the current number of entries in this queue ∗/
public int size () ;

}

Here is a schematic picture of a queue (1 was enqueued first, then 2, then 3):

enqueue(int) →

size()
︷ ︸︸ ︷

3 2 1
→ dequeue()

→ getFirst()

Your task is to write a class MyQueue that implements the interface Queue. In MyQueue,
make use of the collections framework. (Hint: The classes in the collections framework
store objects, whereas the Queue operations receive and return the primitive type int.
Therefore, you may use the wrapper class Integer.)

Answer:
import java . util . ∗ ;

/∗∗ Use LinkedList −− head of queue is head of list ∗/
public class MyQueue implements Queue {

private List queue ;

public MyQueue () {
queue = new LinkedList () ;

}

public int enqueue (int i) {
queue . add (new Integer (i)) ;
return i ;

}

public int dequeue () {
if (size () > 0)

return ((Integer) queue . remove (0)) . intValue () ;
else

throw new RuntimeException (
”Tried to dequeue empty queue ! ”

) ;
}

public int getFirst () {
if (size () > 0)

return ((Integer) queue . get (0)) . intValue () ;
else

throw new RuntimeException (

2

”Tried to get first of empty queue ! ”
) ;

}

public int size () {
return queue . size () ;

}
}

Remark: It is also correct to not explicitly throw a RuntimeException if the called
method throws the exception itself. That means: the above program remains to be
a correct answer if the methods dequeue and getFirst only contain the return

line.

3. Input/Output (10 points)

Write a program FindChar.java which prints the line number where the first instance
of a particular character is found in an input file. The character is specified by the first
command line argument, the input file by the second command line argument. (The
program is assumed to be executed in the directory where the input file resides.)

The output of the program follows the subsequent examples:

• If the first instance of the character ‘I’ in file text.txt is in line 7, then
java FindChar I text.txt

prints out:
The character I appears first in line 7 of file text.txt.

• If the character ‘y’ does not appear in file text.txt, then
java FindChar y text.txt

prints out:
The character y does not appear in file text.txt.

What is the output of your program, if called with the following command line?
java FindChar x FindChar.java

(Line numbers are counted starting with 0.)

Answer:
import java . io . ∗ ;

class FindChar {
public static void main (String [] args)

throws IOException {
char match = args [0] . charAt (0) ;
FileReader fileIn = new FileReader (args [1]) ;
LineNumberReader in = new LineNumberReader (fileIn) ;
int i ;
while ((i = in . read ()) != −1) {

char ch = (char)i ;
if (ch == match) {

3

System . out . println (”The character ” + match

+ ” appears first in line ”
+ in . getLineNumber ()
+ ” of file ” + args [1] + ” .”) ;

return ;
}

}
System . out . println (”The character ” + match

+ ” does not appear in file ”
+ args [1] + ” .”) ;

}
}

4. I/O and Collections (15 points)

We consider a simple format for a text file serving as address book. A sample file might
look like:

Setterberg Petra

070/188329

Lundborg Anna

031/498711

Magnusson Anders

031/471992

Blomqvist Per

073/214947

Regardless how this file is created (may be it is edited by hand), such an address book
should be sorted from time to time. The result of sorting is, in the example, a file
looking like:

Blomqvist Per

073/214947

Lundborg Anna

031/498711

Magnusson Anders

031/471992

Setterberg Petra

070/188329

The second functionality we want to have is the merging of two address book files.
The outcome should be sorted, no matter if the two files were sorted or not. In the
following, you can assume that any input file, taken as an address book, follows the
pattern sketched above: the lines with names and telephone numbers alternate, and
there is an even number of lines in total. (Even if you can assume well-formed files, the
compiler requires exception handling.)

Look at both of the following tasks, before you start one of them. To obtain maximal
points, you have to avoid duplicate code. Therefore, place the code common to both in
some extra class.

4

• Write a public class, the main method of which expects two file names as command
line input. The first argument is the input address book file, the second is the
output address book file, to which the sorted entries are ‘printed’.

• Write a public class, the main method of which expects three file names as command
line input. The first two arguments are input address book files, the second is the
output address book file, to which the merged and sorted entries are ‘printed’.

Your implementation should use the class TreeMap, which implements the interface
SortedMap. Adding a name/number pair could be done by:
smap.put(nameString, numberString);

where smap is a reference to a sorted map object. Thereby, the names are used as keys,
and the telephone numbers are used as values. Sorting is done automatically by the
put-method, using the standard (alphabetical) order over String. (So you don’t have
to implement any order yourself.) The effect of the sorting becomes visible, when we
iterate over the result of smap.entrySet();, as the iterator respects the ordering of
the keys automatically.

Hints:

• For how to iterate over an entry set, see slides of lecture 10, ‘Map by Example’.

• The method readLine() of the class BufferedReader returns a String, either con-
taining the contents of the line, or null if the end of the stream has been reached.

• To write to a file, e.g. named text.txt, use a PrintWriter, like:
PrintWriter out = PrintWriter(new FileWriter("text.txt"));

...

out.println(someString);

Thereby, a line containing someString is printed to the file text.txt, not to the
standard output.

Answer:

• Sorter:

import java . io . ∗ ;
import java . util . ∗ ;

public class Sorter{

private SortedMap smap = new TreeMap () ;

public void insertFromReader (BufferedReader r)
throws IOException{

String nameString = r . readLine () ;
String numberString = r . readLine () ;

while (nameString != null && numberString != null){
smap . put (nameString , numberString) ;
nameString = r . readLine () ;
numberString = r . readLine () ;

5

}
}

public void putToWriter (BufferedWriter w)
throws IOException{

Iterator it = smap . entrySet () . iterator () ;
Map . Entry entry ;

while (it . hasNext ()) {
entry = (Map . Entry) it . next () ;
w . write (entry . getKey () + ”\n”) ;
w . write (entry . getValue () + ”\n”) ;

}
}

}

• MergeAndSortBook:

import java . io . ∗ ;

public class MergeAndSortBook{

public static void main (String [] args){
BufferedReader in , in2 ;
BufferedWriter out ;
Sorter sorter = new Sorter () ;
int index = 0;

try{
in = new BufferedReader (new FileReader (args [index])) ;
sorter . insertFromReader (in) ;
in . close () ;
index++;
if (args . length == 3){

in2 = new BufferedReader (
new FileReader (args [index])) ;

sorter . insertFromReader (in2) ;
in2 . close () ;
index++;

}
out = new BufferedWriter (new FileWriter (args [index])) ;
sorter . putToWriter (out) ;
out . close () ;

}
catch (FileNotFoundException e) {

6

throw new RuntimeException (”File not found : ”
+ args [0]) ;

}
catch (IOException e) {

throw new RuntimeException (”Error writing file : ”
+ args [1]
+ ” or reading file : ”
+ args [0]) ;

}
}

}

5. Threads: A Bakery (15 points)

We consider a swedish bakery featuring the typical nummerlapp system: When a cus-
tomer enters a shop he or she draws a number from a dispenser. We assume there is
only one clerk, announcing who’s next by looking at a display showing the next number
to serve. After serving a customer, the clerk presses some button, causing the displayed
number to increment.

Our task is to build a multithreaded simulation that uses a model of the dispenser and
the incrementable display to coordinate the behaviour of the customers and the single
clerk. The simulation only models a small part of the real world scenario. Particularly,
we do not model the bread/money exchange. Therefore, in the simulation, the only
action performed by a customer is taking a number. The clerk’s action of serving the
customer consists just in push the button (i.e. invoking a method) which causes the
serving number to increment.

Problem Decomposition

We will have one thread per customer and one thread for the clerk. The data that must
be visible for different threads is held by a single object, which keeps track of the next
number to take and the next number to serve.

We have the following classes:

• TakeNumServeNum — Represents both the dispenser and the display. This class is
also responsible for reporting the number taking/serving actions, by printing out
what happens. This class will only have one instance (one object).

• Customer — Represents a customer who will use the TakeNumServeNum object to
‘get a number’. Instances (objects) of this class execute threads, which (according
to the above remark) finish running after a number is taken.

• Clerk — Will use the TakeNumServeNum object to ‘serve a number’. The one and
only instance (object) of this class executes a thread.

• Bakery — Responsible for creating the threads and starting the simulation.

Here is the (first) implementation of the TakeNumServeNum class.

/∗
∗ Description : An instance of this class serves as

∗ a shared resource for the customers and clerk threads

7

∗ of the bakery simulation . This object contains two

∗ instance variables , both of which are initialized to 0 .
∗ The variable nextNumToTake represents the next ”ticket”
∗ given to customers as they arrive . The variable

∗ nextNumToServe represents the next customer to be served .
∗/

class TakeNumServeNum {
// Next number to take by a customer :
private int nextNumToTake = 0;
// Next number to serve by the clerk :
private int nextNumToServe = 0;

// called once by each customer :
public void takeANumber (int custId) {

nextNumToTake++;
System . out . println (”Customer ” + custId

+ ” takes ticket ” + nextNumToTake) ;
}

// repeatedly called by the clerk :
public void serveANumber () {

nextNumToServe++;
System . out . println (” Clerk serves ticket ”

+ nextNumToServe) ;
}

}

In the following, you are asked to implement three versions of the program, possibly
modifying also the TakeNumServeNum class. The first version does neither care about
synchronization nor about cooperation of the threads. The second version introduces
synchronization, the third introduces cooperation.

(a) (8 points) Implement the other three classes. In the first version, do not use the
synchronized modifier or the synchronize statement. Also don’t care about
cooperation, i.e. don’t care if the clerk servers numbers not yet being taken by a
customer. Here are some ingredients for the classes:

• Customer:
To give every Customer a unique ID, the Customer class needs a static variable
which counts ID numbers. It is initialized to 100:
private static int idCounter = 100;

Then, each Customer object has two fields, and id and a reference nextNums

to the TakeNumServeNum object:
private int id;

private TakeNumServeNum nextNums;

This reference is given as an argument to the constructor:
public Customer (TakeNumServeNum tsNum) {

8

id = idCounter ;
idCounter++;
nextNums = tsNum ;

}

In order to make the simulation less predictable, use a randomized delay before
a customer takes a number:
sleep((int)(Math.random() * 1000));

As we said above: a Customer thread is done after taking one number.

• Clerk:
Similarly, the Clerk works with a randomized delay before serving a number:
sleep((int)(Math.random() * 50));

Serving a number means nothing but calling the serveANumber() method of
the TakeNumServeNum object. Like a Customer, the Clerk needs to have a
reference to the TakeNumServeNum object.

• Bakery:
In its main method, the Bakery creates all objects and starts all threads. The
number of customers appearing in the simulation is given as command line
argument to the Bakery.

(b) (2 points) So far, the critical sections of the threads are not synchronized. Which
are the critical sections, and what can happen if we do not synchronize them?

(c) (2 points) Synchronize the critical sections. You can choose between writing the
classes again or clearly describe the code modification.

(d) (3 points) As long as the Clerk thread does not care if numbers it serves are at all
taken by any Customer thread, we might get the following output:
Clerk serves ticket 1

Clerk serves ticket 2

Customer 101 takes ticket 1

Customer 100 takes ticket 2

...

It is no problem that Customer 100 randomly takes a number after Customer 101,
but it is a problem that Clerk serves numbers before they are taken. Repair this,
not using ‘busy waiting’ of the Clerk thread, but using wait() and notifyAll().
(Hint: A comparison between nextNumToTake and nextNumToServe can indicate if
a number is waiting for being served or not.) You can choose between writing the
classes again or clearly describe the code modification.

Answer:

(a) (8 points)

• Customer:

public class Customer extends Thread {

private static int idCounter = 100 ;
private int id ;
private TakeNumServeNum nextNums ;

9

public Customer (TakeNumServeNum tsNum) {
id = idCounter ;
idCounter++;
nextNums = tsNum ;

}

public void run () {
try {

sleep ((int) (Math . random () ∗ 2 0 0 0)) ;
nextNums . takeANumber (id) ;

} catch (InterruptedException e) { }
}

}

• Clerk:

public class Clerk extends Thread {
private TakeNumServeNum nextNums ;

public Clerk (TakeNumServeNum tsNum) {
nextNums = tsNum ;

}

public void run () {
while (true) {

try {
sleep ((int) (Math . random () ∗ 1 0 0 0)) ;
nextNums . serveANumber () ;

} catch (InterruptedException e) { }
}

}
}

• Bakery:

public class Bakery {
public static void main (String [] args) {

TakeNumServeNum nextNums = new TakeNumServeNum () ;
Clerk clerk = new Clerk (nextNums) ;
clerk . start () ;
int appearingCustomers = Integer . parseInt (args [0]) ;
for (int k = 0 ; k < appearingCustomers ; k++) {

Customer customer = new Customer (nextNums) ;
customer . start () ;

}

10

}
}

(b) (2 points)

The critical sections are the two methods of the TakeNumServeNum class, which are:
takeANumber and serveANumber. If not synchronized, these methods may inter-
fere, with each other or with themselves. E.g., it may happen that two customers
are printed out to take the same number.

(c) (2 points)

change TakeNumServeNum to:

class TakeNumServeNum {
// Next number to take by a customer :
private int nextNumToTake = 0;
// Next number to serve by the clerk :
private int nextNumToServe = 0;

// called once by each customer :
public synchronized void takeANumber (int custId) {

nextNumToTake++;
System . out . println (”Customer ” + custId

+ ” takes ticket ” + nextNumToTake) ;
}

// repeatedly called by the clerk :
public synchronized void serveANumber () {

nextNumToServe++;
System . out . println (” Clerk serves ticket ”

+ nextNumToServe) ;
}

}

(d) (3 points)

change TakeNumServeNum to:

class TakeNumServeNum {
// Next number to take by a customer :
private int nextNumToTake = 0;
// Next number to serve by the clerk :
private int nextNumToServe = 0;

// called once by each customer :
public synchronized void takeANumber (int custId) {

nextNumToTake++;

11

System . out . println (”Customer ” + custId

+ ” takes ticket ” + nextNumToTake) ;
notifyAll () ;

}

// repeatedly called by the clerk :
public synchronized void serveANumber () {

while (nextNumToTake <= nextNumToServe) {
try {

wait () ;
} catch (InterruptedException e) { }

}
nextNumToServe++;
System . out . println (” Clerk serves ticket ”

+ nextNumToServe) ;
}

}

12

