Chalmers | GOTEBORGS UNIVERSITET 2020-01-18

Examiner: David Sands, dave@chalmers.se, D&IT,
Answering questions at 10 — 10.30 (or by phone 031 772 1059)

Functional Programming TDA 452, DIT 143
2020-01-18 8:30 — 12:30 Lindholmen-salar

031 772 1059

There are 5 questions with maximum 12 + 14 4+ 6 + 8 = 40 points. Grading:
Chalmers: 3 = 20-26 points, 4 = 27-33 points , 5 = 34-40 points

GU:

G = 20-33 points, VG = 34—40 points

Results: latest approximately 15 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (12 points)

(a) (8 points) For each of the following definitions, give the most general type, or write
”No type” if the definition is not correct in Haskell.

fa x = unlines ("Hello, " : x)
fb (x:y) = (x,x%,y)

fc x y (z:1) = x<=y && not z

fd a = do s <- a

putStrln $ "Answer: " ++ s

(b) (4 points) Define a function merge that merges two sorted lists into a sorted list.

merge :: Ord a => [a] -> [a] —> [al

2. (14 points) The following types are used to represent a card game Poopamon. Each
playing card is either a Trainer or a Monster. A trainer card has between 1 and 5 “hit
points”. A monster card has a particular Species and a Kind, which is either Nature,
Fire, or Water. A monster card has 1, 2, or 3 hit points. Note that not all combinations
of Species and Kind are valid.

A hand of cards consists of one or more cards. These are modelled in Haskell using the
following data types:

type HP = Int -- the number of "hit points"

data Card = Trainer HP | Monster Species Kind HP deriving Show
data Species = Poopachu | Fartle | Blub deriving (Eq,Show)
data Kind = Nature | Water | Fire deriving (Eq,Show)
data Hand = Last Card | Several Card Hand deriving Show

The combinations of Species and Kinds that are valid are given by the following function:

validKinds :: Species -> [Kind]
validKinds Poopachu [Fire]

validKinds Blub [Water]

validKinds Fartle [Nature,Fire,Water]

Cards should only have valid combinations according to this function. So for example
the following is a valid hand:

exHand = Several (Trainer 5)
(Several (Monster Fartle Nature 2)
(Last (Monster Poopachu Fire 3)))

Note for example that a Poopachu can only have kind Fire, and no monster can have
more than three hit points.

(a) (2 points)
Define the data type invariant
prop_Card :: Card -> Bool

which checks that a card is valid according to the constraints on hit points and
kinds described above.

(b) (2 points)
Define a recursive function

prop_Hand :: Hand -> Bool

which checks that a hand only contains valid cards.

(¢c) (3 points)
Define a function

foldHand ::(Card -> a) -> (a -> a -> a) -> Hand -> a

such that foldHand f op hand combines all the cards in a hand by applying
function f to each card, and combining all the results with the function op. For
example, with this function the previous question could be deined by

prop_Hand’ h = foldHand prop_Card (&&) h

(2 points) Use foldHand to define a function

hitPoints :: Hand -> Int
which calculates the total number of hit points in a given hand. You may use
non-recursive helper-functions if you need.

(5 points) Write the code necessary to be able to sucessfully run (and pass) the
test quickCheck prop_Card, and other useful tests on cards. You do not need to
write any code for type Hand.

3. (6 points) The picture below is what is sometimes called a decision tree.

Is it
raining
?

YES NO

W
Take the
bus

> 10km

Take the
bus

Between 1 and 10km

Cycle

The following data type can be used to represent such a decision tree:

data DTree = Q Question [(Answer,DTree)] deriving Show
type Question = String
type Answer = String

Each node of the tree has a question, and a list of pairs of answers and decision trees.
A final decision (a square box in the picture) is represented as a question with no
alternatives; for convenience we define a function for this:

decision :: Question -> DTree
decision q = Q q []

(a) (3 points)
Give a definition of a decision tree
travel :: DTree

which represents the tree pictured above. You can use local definitions for parts
of your answer to make your solution more readable!

(b) (3 points) Define a function
allAnswers :: DTree -> [Answer]

which computes a list of all the answers handled by a given decision tree.

For example allAnswers travel should satisfy:

prop_allAnswers =
allAnswers travel == ["Yes", "No", "<1km", "Between 1 and 10km", ">10km"]

4. (8 points) One way to represent a Sudoku puzzle is as a list-of-lists:

type Sudoku = [Row]
type Row = [Maybe Int]

Here is an example of a mini 3x3 sudoku

exampleSud :: Sudoku
exampleSud = [[blank, blank, Just 4]
,[blank, Just 5, blank]
,[Just 6, blank, blank]] where blank = Nothing

The following definitions represent a Sudoku in a different way, by giving the position
and the number contained in the non-blank squares

type Sudoku’ = [FilledCell]
type Pos = (Int,Int)

data FilledCell = Filled Pos Int deriving (Eq,Show)

We will assume that positions are always positive, and the position (0,0) refers to the
top left square of the Sudoku, and the y-coordinates grow downwards.

Note also that the order of the elements in the list is unimportant, but there are no
repeated coordinates. The example Sudoku above could be represented as:

exampleSud’ :: Sudoku’
exampleSud’ = [Filled (2,0) 4, Filled (1,1) 5, Filled (0,2) 6]

(a) (4 points) Define a function
fromSudoku :: Sudoku -> Sudoku’

that converts from the first representation to the second. You may assume that
every row and column in your Sudoku has the same number of elements, but your
definition should work for any size of Sudoku (not just 9 x 9).

Your definition should convert exampleSud into something equivalent to exampleSud’
(i.e. the elements should be the same, but the order might be different).

(b) (4 points) Define a function
update :: Sudoku’ -> Pos -> Maybe Int -> Sudoku’

which updates the given Sudoku’ at the given position. For example the following
should be true for your solution (although you might need to reorder the lists):

prop_update =
update exampleSud’ (2,0) Nothing == [Filled (1,1) 5, Filled (0,2) 6]
&& update exampleSud’ (2,0) (Just 1) ==
[Filled (2,0) 1, Filled (1,1) 5, Filled (0,2) 6]
&& update exampleSud’ (0,0) Nothing == exampleSud’

You may assume that the Sudoku’ is valid (e.g. does not have any repeated
positions).

