Chalmers | GOTEBORGS UNIVERSITET 2019-04-25

Examiner: Thomas Hallgren, D&IT,
Answering questions at approx 14.30 (or by phone)

Functional Programming TDA 452, DIT 143

2019-04-25 14.00 - 18.00 “Maskin”-salar (M)

There are 4 questions with maximum 8 + 12 4+ 12 4+ 8 = 40 points. Grading:
Chalmers: 3 = 20-26 points, 4 = 27-33 points , 5 = 34—40 points

GU:

G = 20-33 points, VG = 34-40 points

Results: latest approximately 10 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (8 points) For each of the following definitions, give the most general type, or write ”No
type” if the definition is not correct in Haskell.

faxy =y

fb x y = x++[y]

fc £ (x,y) = (f x,f y)

fd n k = product [n | _ <= [1..k]]
Solution:

fa :: a->b->b

fo :: [a]l -> a -> [a]

fc :: (a->b) -> (a,a) -> (b,b)

fd :: (Num a,Num b,Enum b) => a -> b -> a

2. (12 points)

(a) (3 points) Define data types Rank, Suit and Card for representing the cards used
in card games. There are four suits: hearts, spades, diamonds and clubs. There
are 13 ranks: the numeric ranks 2, 3 ... 10, and the ranks of face cards: jack,
queen, king and ace. Every card has a rank and a suit, so in total there are 52
different cards.

Make sure that the data types are ”junk free”, i.e. all possible values of type Card
should represent valid cards.

(b) (3 points) Define random test data generators for suits, rands and cards:

rSuit :: Gen Suit
rRank :: Gen Rank
rCard :: Gen Card

(c) (3 points) Let a hand of cards be represented as a list of cards.
type Hand = [Card]

Write a test data generator that generates a random hand of a given size. The
generated hand should not contain the same card more than once.

rHand :: Int -> Gen Hand

(d) (3 points) Write a property prop_rHand_correct to verify that hands generated
by rHand have the correct size and does not contain the same card more than once.

Hint: Use the QuickCheck function forAll to generate random sizes in a suitable
range and random hands of that randomly chosen size.

forAll :: (Testable prop, Show a) => Gen a -> (a -> prop) -> Property

Solution:

-- (a)

data Suit = Hearts | Spades | Diamonds | Clubs
deriving (Eq, Bounded, Enum, Show)

data NumericRank = N2 | N3 | N4 | N5 | N6 | N7 | N8 | N9 | N10O
deriving (Eq, Bounded, Enum, Show)

data Rank = Numeric NumericRank | Jack | Queen | King | Ace
deriving (Eq, Show)

data Card = Card Rank Suit
deriving (Eq, Show)
-- (b)
rSuit = elements [minBound .. maxBound]
rRank = elements (map Numeric [N2 .. N10] ++ [Jack, Queen, King, Ace])
rCard = Card <$> rRank <*> rSuit
-- (o)

rHand = rHand’ []
rHand’ h O = return h
rHand’ h n = do ¢ <- rCard
if ¢ ‘elem‘ h -- same card?
then rHand’” h n -- discard it and try again
else rHand’ (c:h) (n-1)
-- (d)
prop_rHand_correct = forAll (choose (0,52)) $ \ n ->
forAll (rHand n) $ \ h —>
nub h == h &% length h==n

3. (12 points) Consider the following data type for representing rectangular grids:

data Grid a = Grid [[al] deriving (Eq,Show)

type Pos = (Int,Int) -- (x,y)
type Size = (Int,Int) -- (width,height)
gl :: Grid Int -- Example
gl = Grid [[3,4,5],
[6,7,8]1]

(a) (2 points) Define an indexing operator
(") :: Grid a -> Pos -> a

that returns the element at the given coordinates in a grid. In a grid of size (w,h)
the coordinates of the top left and bottom right corners are (0,0) and (w-1,h-1),
respectively. Examples:

gl ! (0,0) == 3
gl ! (2,1) == 8

(b) (2 points) Define a function that applies a function to every element of a grid.
mapGrid :: (a->b) -> Grid a -> Grid b
Example:
mapGrid even gl == Grid [[False,True,False], [True,False,True]]

(¢) (3 points) Define a function that, given the size of a grid and a position in the grid,
computes the positions of the neighbours in the grid:

neighbours :: Size -> Pos —-> [Pos]

A position has up to 8 neighbours (moving horizontally, vertically and diagonally),
but positions in the corners and along the edges have fewer neighbours. Examples:

neighbours (3,3) (1,1) == [(0,0),(0,1),(0,2),(1,0),(1,2),(2,0),(2,1),(2,2)]
neighbours (3,3) (0,0) == [(0,1),(1,0),(1,1)]
neighbours (3,3) (2,1) == [(1,0),(1,1),(1,2),(2,0),(2,2)]

(d) (3 points) Define a function that computes neighbourhoods, i.e. a grid where every
element is replaced with the list of its neighbour elements.

neighbourhoods :: Grid a -> Grid [al

(e) (2 points) Define a function that counts how many of the neighbours of each element
in a grid of booleans are True.

countNeighbours :: Grid Bool -> Grid Int

Example:

countNeighbours (mapGrid even gl) == Grid [[2,2,2],
[1,3,1]1]

Solution:

-- (a)

Grid rows ! (x,y) = rows !! y Il x

-- (b)
mapGrid f (Grid rows) = Grid $ map (map f) rows

-- (o)
neighbours (w,h) (x0,y0) =
[(x,y) | x<-range x0 w, y<-range yO h, (x,y)/=(x0,y0)]
where
range mid limit = [i | i<-[mid-1 .. mid+1], 0<=i && i<limit]

-- (@
neighbourhoods g = mapGrid (map (g!) . neighbours s) (identityGrid s)
where s = size g

size :: Grid a -> Size
size (Grid rows@(row:_))

(length row,length rows)

-- | identityGrid s ! p == p
identityGrid :: Size -> Grid Pos
identityGrid (w,h) = Grid [[(x,y) | x<-[0..w-1]] | y<-[0..h-1]]

-- (e
countNeighbours = mapGrid count . neighbourhoods
where
count = length . filter id

4. (8 points)
(a) (3 points) Define a function segments that splits a list into segments.

segments :: (a->Bool) -> [a] -> [[all

Examples:
segments (==’;’) "abc;def ;g hi " = ["abc", "def ", "g hi "]
segments isSpace "abc;def ;g hi " = ["abc;def", "", ";g", "hi"]

(Note: there are four space characters in the example string: two after £, one after
g and one after i.)

(b) (5 points) Consider files containing the scores that some players obtained while

playing a game:

Player 1,10,30,40
Player 2,30,20,15

Each line is a sequence of comma-separated values, where the first value identifies
the player and the remaining values are scores.

Define the function addSumsToFile
addSumsToFile :: String -> I0 ()

that reads a file containing scores as outlined above and writes a file where the
sum of the scores for each player has been added as the second value in each line.
For example, addSumsToFile "scores" should read the file scores.csv and write
the output to scores-sum.csv. If scores.csv contains the data above, then the
following data should be written to scores-sum.csv:

Player 1,80,10,30,40
Player 2,65,30,20,15

In addition to the functions listed at the back of this exam, the following library
functions might be useful:

—- readFile reads the contents of a file
readFile :: FilePath -> I0 String

—-- writeFile writes contents to a file
writefile :: FilePath -> String -> I0 ()

-- File names are strings.
type FilePath = String

Solution:

-- (a)
segments p []
segments p xs

(]
case break p xs of
(xs1,x82) -> xsl:segments p (drop 1 xs2)

-— (o)
addSumsToFile path =
do s <- readFile (path++".csv")
let convert = toCSV . map addSum . fromCSV
writeFile (path++"-sum.csv") (convert s)

addSum :: [String] -> [String]
addSum (name:scores) = name:show (sum (map read scores)):scores

fromCSV :: String -> [[String]]
fromCSV = map (segments (==’,’)) . lines

toCSV :: [[Stringl] -> String
toCSV = unlines . map (separate ’,’)

separate :: a -> [[a]] -> [a]

separate sep [] = []

separate sep [x] = x

separate sep (x:xs) = x++sep:separate sep xs

ﬁl
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

-}

—— standard type classes

class Showa where

show : a -> String
class Eqa where
(==), (I7) © a —>a —>Bool
class (Eqa)=>0Orda where
(<), (=9), >3), () a ->a —>Bool
max, min Ta —>a —>a
class (Eqa, Show a) => Num a where
(). (2, () na —>a —>a
negate Da —>a
abs, signum D a —>a
frominteger . Integer ->a
class (Num a, Ord a) => mmm_ a where
toRational ' a —>Rational
class (Real a, Enum 8 = _:Hm@ﬂm_ a where
quot, rem T a —>a ->a
div, mod T a —>a —>a
tolnteger ©a —>lInteger
class (Num a) => _uqmo:o:m_ a where
() .. ->a ->a
fromRational i xm:o:m_ ->a
class (Fractional a) => _u_om::@ a where
exp, log, sqrt Ta —>a
sin, cos, tan D a —>a
class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a ->b
ceiling, floor (Integral b) => a ->b
—— numerical functions
even, odd .. (Integral @) => a —> Bool
evenn =n ‘rem' 2=
odd =not . even
—— monadic functions
sequence ::Monad m=>[ma] —>m [a]
sequence = foldr mcons (return 0)
where mconspq= do x<-p
Xs<-q
return (x 1 XS)
sequence_ :Monad m=>[ma]->m()
sequence_ Xs = do sequence xs

return ()

liftM :: (Monad m)=>(@al->r)->mal->mr
litMfml = do x1<-ml
return (f x1)

—— functions on functions

id ta->a

id x =X

const ra->b->a

constx =X

@] i (b ->c) ->(@ ->b) ->a ->c
=\x ->1(gx)

flip t(@->b->c)->b->a->c

fipfxy =fyx

($) (@ ->b) ->a ->b

f$ x =fx

—— functions on Bools

data Bool = False | True

(&&), () ' Bool ->Bool -—>Bool
True && X =X

False && _ = False

True || _ =True

False || x =X

not :: Bool —> Bool

not True = False

not False =True

—- functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True

isJust Nothing = False
isNothing i Maybe a —> Bool
isNothing = not . isJust
fromJust :»Maybe a —>a
fromJust Justa) = a
maybeToList :: Maybe a —> [a]
maybeToList Nothing = 1]
maybeTolList (Justa) = [a]
listToMaybe :: [a] —> Maybe a
listToMaybe [= Nothing
listToMaybe (a :_) = Justa
catMaybes :<_m<cm al —>[a]

catMaybes Is = [x]Justx <—1Is]

—- functions on pairs

fst t(ab)—>a

fst (x,y) = X

snd t(ab)—>b
snd (x.y) =Yy

swap i (a,b) —> (b,a)

swap (a,b) =(b,a)

curry :((@, b)->c)—>a->b->c
curry fxy = f(x,y)

uncurry > (@->b ->c¢) —>((a, b) —>¢)
uncurry fp = f(fst p) (snd p)

—- functions on lists

map :: (@ —> b) —> [a] => [b]

map f xs = [fx]x<-xs]
(++) = [a] ->[a] —> [4]
xs ++ys = foldr (1) ys xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [X|x<-xs,px]

concat :: [[a]] —> [a]
concat xss = foldr (++) [l xss

concatMap :: (a —> [b]) —> [a] —> [b]
concatMap f = concat . map f

head, last t[al—>a

head (x :_) =X

last [x] =X

last(_ :xs) =lastxs

tail, init :[a] —> [a]

tal (. :xs) =xs

init [x] = 1|

init(x :xs) =x :initxs
null :: [a] => Bool

null] =True

null(C @) = False

length :[a] —> Int

length = foldr (const (1+)) 0
(" : [a] —>Int ->a
x:)"no =x

(C:xs)hn =xs!l(n-1)

foldr =(@a->b VS >b->[a]—>b
foldr f z 1]
foldr f z (x : xmv = ﬁx (foldr f z xs)

foldl :(a->b vmv ->a->[b]->a
foldl f z 0

foldl f z (x xmv = ﬁo_g_ f(fzx)xs

iterate t(@a->a)->a->[a]

iterate fx = X iterate f (f x)
repeat ra->[a]

repeat x = Xs where xs=x :Xxs
replicate slint—>a->[a]

replicate n x = take n (repeat x)

cycle :[a] =>[a]

cycle] = error"

cycle xs = xs' where xs' = xs ++ xs'’
tails = [a] —> [[a]]
tails xs = Xs : case xs of
0 -
_ :xs' —>tails xs’
take, drop 2 Int —>[a] —> [a]
taken_ |n<=0= 0
take _] = 1
taken (x :xs) =X . take (n—-1) xs
dropnxs |n<=0= xs
drop _] = I
dropn(_ :Xxs) = drop (n—1) xs
splitAt 2 Int => [a] —> ([a],[a])
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p 1] = 1]
takeWhile p (x I XS)
| px =X . takeWhile p xs
| otherwise = 1]
dropWhile p 1] = 1]
dropWhile p xs@(x : xs’)
| px = dropWhile p xs’

| otherwise = xs

span :: (a —> Bool) —> [a] —> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String —> [String]
- _m:mw "apa\nbepa\ncepa\n"
- ==['apa’,"bepa’,"cepa’]
- <<oam ‘apa bepa\n cepa"
—— ==["apa","bepa","cepa’]

unlines, unwords :: [String] —> String
—— unlines ["apa”, __cmum__ "cepa"]

- == "apa\nbepa\ncepa"
- c:<<oam ["apa","bepa”,"cepa"]
- == "apa bepa cepa"

reverse :[a] —> [a]
reverse = foldl (flip () 0
and, or :: [Bool] —> Bool
and = foldr (&&) True
or = foldr (||) False
any, all i (a —> Bool) —> [a] —> Bool
any p = or.mapp
allp = and.mapp
elem, notElem :: (Eqa)=>a —>[a] —> Bool
elem x = any (==x)
notElem x = all (I=x)
lookup : (Eqa)=>a->][(a,b)] > Maybe b
lookup key 1] = Nothing
lookup key ((x,y) 1 XyS)
| key ==x = Justy

| otherwise = lookup key xys

Prelude.cycle: empty list"

sum, product :: (Numa)=>[a] —>a
sum = foldl (+) O
product = foldl (*) 1

maximum, minimum :: (Ord a) =>[a] —> a
maximum [] =error" Prelude.maximum: empty list"
maximum (X : xs) = foldl max x xs

minimum [] =error" Prelude.minimum: empty list"
minimum (x : xs) = foldl min x xs
zip = [a] => [b] —>[(a,b)]
zip = zIpWith (,)
zipWith i1 (@—>b—>c) —> [a]->[b]->[c]
zipWith z (a ;as) (b :bs)
=zab : zipWith z as bs
zipWith _ = 1
unzip (@ b)] —> ([al.[b])
unzip
foldr (\(a,b) Amw bs) —>(a:asb:bs)(0 .0)
nub :Eqa=>[a] ->[a]
nub [= 0
nub (X :xs) =
X cnub [y|ly<—-xs,x/=y]
delete ©Ega=>a->[a] —>[a]
delete y 1 = I
delete y (x IXS) =
if x== then xs else x : deleteyxs
() o Ega=> [a] ->[a] —> [a]
\) = foldl (flip o_m_mﬁmv
union 2Ega=>[a] —>[a] —> [a]
union xsys = xs ++ (ys \\ xs)
intersect 2 Eqa=>[a] —>[a] —>[a]
intersect xs ys = [X]x<=xs,x ‘elem’ ys]
intersperse ::a->[a] —>[a]
——intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0,4]
transpose = [[al] —> [[a]]
- :m:mvomm E 2,3],[4,5,6]]
==[[1,4],[2,5],[3,6]]

ition :: (a —> Bool) —> [a] —> ([a],[a])
on pxs =
er p xs, filter (not . p) xs)

group = Eqa=>[a] —>[[a]]
group = groupBy (==)

groupBy :: (a —>a —> moo_v > [a] —> [[a]]

groupBy _] 0

groupBy eq (x xwv = (X 1ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] —> [a] —> Bool

isPrefixOf 1 _ = True
isPrefixOf _ 1 = False
isPrefixOf (x 1XS)(y :ys)= x==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSuffixOf x y = reverse x

‘isPrefixOf reverse y
sort ::(Ord a) => [a] —> [a]
sort = foldr insert 1]
insert ::(Ord mv =>a —>[a] —> [a]
insert x : [x]

insert x (y : xmv
if x<=y then x:y:xs else y :insertxxs

—- functions on Char
type String = [Char]

toUpper, toLower :: Char —> Char
—-—toUpper 'a’ =="A’

——toLower’Z’ ==z

digitTolnt :: Char —> Int
——digitToInt '8’ ==

intToDigit :: Int => Char
—— intToDigit 3 =="3

ord :: Char —> Int
chr :: Int => Char

—- Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—- the generator for values of a type
——in class Arbitrary, used by quickCheck

choose :: Random a=>(a, a) > Gena
—- Generates a random element in the given
—-inclusive range.

oneof :: [Gen a] —> Gen a
—- Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] —>Gena
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int —=> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int —> Gen a) —> Gen a
—— construct generators that depend on
—- the size parameter.

