Chalmers | GOTEBORGS UNIVERSITET 2018-04-05

Examiner: Thomas Hallgren, hallgren@chalmers.se, D&IT,
Answering questions at approx 15.00 (or by phone 0735 124 575)

Functional Programming TDA 452, DIT 142
2018-04-05 14.00 - 18.00 “Maskin”-salar (M)

0735 124 575

There are 5 questions with maximum 8 + 10 + 6 + 7 4+ 9 = 40 points. Grading:
Chalmers: 3 = 20-26 points, 4 = 27-33 points , 5 = 34-40 points

GU:

G = 20-33 points, VG = 34—40 points

Results: latest approximately 10 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (8 points) For each of the following definitions, give the most general type, or write ”No
type” if the definition is not correct in Haskell.

fa x =X : X
fb x =x ++ x
fc x y = show (x !! y)

fd

filter fst

2. (10 points)

(a)

(3 points) Define a function scramble that takes a list and puts all the elements
at even positions before the elements at odd position. Positions are numbered
starting at 0, so the first element is at an even position. The function should run
in linear time and its type should be as general as possible.

Examples:

scramble [0..10] == [0,2,4,6,8,10,1,3,5,7,9]
scramble "Functional Programming" == "Fntoa rgamnucinlPormig

(3 points) Define a function unscramble that is the inverse of scramble. The
function should run in linear time and its type should be as general as possible.

Examples:

unscramble [0,2,4,6,8,10,1,3,5,7,9] (0,1,2,3,4,5,6,7,8,9,10]
unscramble "Fntoa rgamnucinlPormig" == "Functional Programming"

(2 points) Define a function iter that applies a function a given number of times
to its argument.

iter :: Int -> (a->a) -> a -> a
Examples:

iter 0 (*x2) 1 =1

iter 5 (x2) 1 = 32

(2 points) Define a QuickCheck property that expresses that scrambling a list n
times and then unscrambling it n times gives you the original list back. Make sure
you avoid problems with negative numbers.

3. (6 points)

(a)

(2 points) Define a function that generates a random vowel (i.e. one of the letters
in the string "aeiouy"), and a function that generates a random consonant (i.e. a
letter a-z that is not a vowel).

rVowel, rConsonant :: Gen Char
(4 points) Write a random password generator.
randomPassword :: Gen String

The passwords should be random sequences of letters, but to make them easier to
remember, every other letter should be a consonant, and every other letter should
be a vowel. Use rConsonant and rVowel from above to generate the consonants
and vowels. The length of the passwords should vary randomly between 8 and 10.
Here are a few examples of passwords generated in this way: xazybenu, bilikocy,
nohuruci, bisiqamotu, dixygahoba, huwamapun.

4. (7 points) Write a simple spelling checker, i.e., a function that reads a dictionary and
a text file and checks that all words in the text are spelled correctly according to the
dictionary.

checkSpelling :: FilePath -> I0 [(String,Int)]

The argument is the name of the file to check. The result is a list of misspelled words
paired with the line number of the line they appeared on.

Assume that there is a function that loads the dictionary and returns a pair of functions:

loadDictionary :: IO (String->[String],String->Bool)

The first function in the pair splits a string into words and removes punctuation. The
second function checks if a word is spelled correctly.

In addition to the functions listed at the back of this exam, the following library function
might be useful:

—-- readFile reads the contents of a file
readFile :: FilePath -> IO String

-- File names are strings.
type FilePath = String

5. (9 points)

(a)

(3 points) Define a recursive data type Expr to represent arithmetic expressions
with numbers, variables, addition and multiplication. Let the numbers have type
Double and the variable names be represented as strings.

type Name String

data Expr

(3 points) Define a function that computes the value of an expression, given an
association list with the values of the variables. The function is allowed fail if it
encounters an unknown variable.

valueOfExpr :: [(Name,Double)] -> Expr -> Double

(3 points) Let a list of definitions 1 = ey, ...,x, = e, be represented as a list
of pairs of variable names ane expressions. Define a function that computes the
values all the variables defined in a list of definitions.

valuesOfDefinitions :: [(Name,Expr)] -> [(Name,Double)]

Note that thanks to lazy evaluation, this definition can be very simple. You don’t
need to worry about in which order to compute the definitions, lazy evaluation takes
care of that. You can assume that the list of definitions is free from circularities,
e.g. z =y,y = z. (It’s OK if the function crashes or loops if there are circularities.)

Example:

el, e2, e3 :: Expr

el
e2
e3

= ... —— the representation of x+1 in your data type
= ... —-— the representation of y+2*x in your data type
= ... —-- the representation of 3 in your data type

eqns = [(nyu ,el) s (nzu ,92) , ("X" ,93)]
prop_values = valuesOfDefinitions eqns == [("y",4),("z",10),("x",3)]

ﬁl
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

-}

—— standard type classes

class Showa where

show : a -> String
class Eqa where
(==), (I7) © a —>a —>Bool
class (Eqa)=>0Orda where
(<), (=9), >3), () a ->a —>Bool
max, min Ta —>a —>a
class (Eqa, Show a) => Num a where
(). (2, () na —>a —>a
negate Da —>a
abs, signum D a —>a
frominteger . Integer ->a
class (Num a, Ord a) => mmm_ a where
toRational ' a —>Rational
class (Real a, Enum 8 = _:Hm@ﬂm_ a where
quot, rem T a —>a ->a
div, mod T a —>a —>a
tolnteger ©a —>lInteger
class (Num a) => _uqmo:o:m_ a where
() .. ->a ->a
fromRational i xm:o:m_ ->a
class (Fractional a) => _u_om::@ a where
exp, log, sqrt Ta —>a
sin, cos, tan D a —>a
class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a ->b
ceiling, floor (Integral b) => a ->b
—— numerical functions
even, odd .. (Integral @) => a —> Bool
evenn =n ‘rem' 2=
odd =not . even
—— monadic functions
sequence ::Monad m=>[ma] —>m [a]
sequence = foldr mcons (return 0)
where mconspq= do x<-p
Xs<-q
return (x 1 XS)
sequence_ :Monad m=>[ma]->m()
sequence_ Xs = do sequence xs

return ()

liftM :: (Monad m)=>(@al->r)->mal->mr
litMfml = do x1<-ml
return (f x1)

—— functions on functions

id ta->a

id x =X

const ra->b->a

constx =X

@] i (b ->c) ->(@ ->b) ->a ->c
=\x ->1(gx)

flip t(@->b->c)->b->a->c

fipfxy =fyx

($) (@ ->b) ->a ->b

f$ x =fx

—— functions on Bools

data Bool = False | True

(&&), () ' Bool ->Bool -—>Bool
True && X =X

False && _ = False

True || _ =True

False || x =X

not :: Bool —> Bool

not True = False

not False =True

—- functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True

isJust Nothing = False
isNothing i Maybe a —> Bool
isNothing = not . isJust
fromJust :»Maybe a —>a
fromJust Justa) = a
maybeToList :: Maybe a —> [a]
maybeToList Nothing = 1]
maybeTolList (Justa) = [a]
listToMaybe :: [a] —> Maybe a
listToMaybe [= Nothing
listToMaybe (a :_) = Justa
catMaybes :<_m<cm al —>[a]

catMaybes Is = [x]Justx <—1Is]

—- functions on pairs

fst t(ab)—>a

fst (x,y) = X

snd t(ab)—>b
snd (x.y) =Yy

swap i (a,b) —> (b,a)

swap (a,b) =(b,a)

curry :((@, b)->c)—>a->b->c
curry fxy = f(x,y)

uncurry > (@->b ->c¢) —>((a, b) —>¢)
uncurry fp = f(fst p) (snd p)

—- functions on lists

map :: (@ —> b) —> [a] => [b]

map f xs = [fx]x<-xs]
(++) = [a] ->[a] —> [4]
xs ++ys = foldr (1) ys xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [X|x<-xs,px]

concat :: [[a]] —> [a]
concat xss = foldr (++) [l xss

concatMap :: (a —> [b]) —> [a] —> [b]
concatMap f = concat . map f

head, last t[al—>a

head (x :_) =X

last [x] =X

last(_ :xs) =lastxs

tail, init :[a] —> [a]

tal (. :xs) =xs

init [x] = 1|

init(x :xs) =x :initxs
null :: [a] => Bool

null] =True

null(C @) = False

length :[a] —> Int

length = foldr (const (1+)) 0
(" : [a] —>Int ->a
x:)"no =x

(C:xs)hn =xs!l(n-1)

foldr =(@a->b VS >b->[a]—>b
foldr f z 1]
foldr f z (x : xmv = ﬁx (foldr f z xs)

foldl :(a->b vmv ->a->[b]->a
foldl f z 0

foldl f z (x xmv = ﬁo_g_ f(fzx)xs

iterate t(@a->a)->a->[a]

iterate fx = X iterate f (f x)
repeat ra->[a]

repeat x = Xs where xs=x :Xxs
replicate slint—>a->[a]

replicate n x = take n (repeat x)

cycle :[a] =>[a]

cycle] = error"

cycle xs = xs' where xs' = xs ++ xs'’
tails = [a] —> [[a]]
tails xs = Xs : case xs of
0 -
_ :xs' —>tails xs’
take, drop 2 Int —>[a] —> [a]
taken_ |n<=0= 0
take _] = 1
taken (x :xs) =X . take (n—-1) xs
dropnxs |n<=0= xs
drop _] = I
dropn(_ :Xxs) = drop (n—1) xs
splitAt 2 Int => [a] —> ([a],[a])
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p 1] = 1]
takeWhile p (x I XS)
| px =X . takeWhile p xs
| otherwise = 1]
dropWhile p 1] = 1]
dropWhile p xs@(x : xs’)
| px = dropWhile p xs’

| otherwise = xs

span :: (a —> Bool) —> [a] —> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String —> [String]
- _m:mw "apa\nbepa\ncepa\n"
- ==['apa’,"bepa’,"cepa’]
- <<oam ‘apa bepa\n cepa"
—— ==["apa","bepa","cepa’]

unlines, unwords :: [String] —> String
—— unlines ["apa”, __cmum__ "cepa"]

- == "apa\nbepa\ncepa"
- c:<<oam ["apa","bepa”,"cepa"]
- == "apa bepa cepa"

reverse :[a] —> [a]
reverse = foldl (flip () 0
and, or :: [Bool] —> Bool
and = foldr (&&) True
or = foldr (||) False
any, all i (a —> Bool) —> [a] —> Bool
any p = or.mapp
allp = and.mapp
elem, notElem :: (Eqa)=>a —>[a] —> Bool
elem x = any (==x)
notElem x = all (I=x)
lookup : (Eqa)=>a->][(a,b)] > Maybe b
lookup key 1] = Nothing
lookup key ((x,y) 1 XyS)
| key ==x = Justy

| otherwise = lookup key xys

Prelude.cycle: empty list"

sum, product :: (Numa)=>[a] —>a
sum = foldl (+) O
product = foldl (*) 1

maximum, minimum :: (Ord a) =>[a] —> a
maximum [] =error" Prelude.maximum: empty list"
maximum (X : xs) = foldl max x xs

minimum [] =error" Prelude.minimum: empty list"
minimum (x : xs) = foldl min x xs
zip = [a] => [b] —>[(a,b)]
zip = zIpWith (,)
zipWith i1 (@—>b—>c) —> [a]->[b]->[c]
zipWith z (a ;as) (b :bs)
=zab : zipWith z as bs
zipWith _ = 1
unzip (@ b)] —> ([al.[b])
unzip
foldr (\(a,b) Amw bs) —>(a:asb:bs)(0 .0)
nub :Eqa=>[a] ->[a]
nub [= 0
nub (X :xs) =
X cnub [y|ly<—-xs,x/=y]
delete ©Ega=>a->[a] —>[a]
delete y 1 = I
delete y (x IXS) =
if x== then xs else x : deleteyxs
() o Ega=> [a] ->[a] —> [a]
\) = foldl (flip o_m_mﬁmv
union 2Ega=>[a] —>[a] —> [a]
union xsys = xs ++ (ys \\ xs)
intersect 2 Eqa=>[a] —>[a] —>[a]
intersect xs ys = [X]x<=xs,x ‘elem’ ys]
intersperse ::a->[a] —>[a]
——intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0,4]
transpose = [[al] —> [[a]]
- :m:mvomm E 2,3],[4,5,6]]
==[[1,4],[2,5],[3,6]]

ition :: (a —> Bool) —> [a] —> ([a],[a])
on pxs =
er p xs, filter (not . p) xs)

group = Eqa=>[a] —>[[a]]
group = groupBy (==)

groupBy :: (a —>a —> moo_v > [a] —> [[a]]

groupBy _] 0

groupBy eq (x xwv = (X 1ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] —> [a] —> Bool

isPrefixOf 1 _ = True
isPrefixOf _ 1 = False
isPrefixOf (x 1XS)(y :ys)= x==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSuffixOf x y = reverse x

‘isPrefixOf reverse y
sort ::(Ord a) => [a] —> [a]
sort = foldr insert 1]
insert ::(Ord mv =>a —>[a] —> [a]
insert x : [x]

insert x (y : xmv
if x<=y then x:y:xs else y :insertxxs

—- functions on Char
type String = [Char]

toUpper, toLower :: Char —> Char
—-—toUpper 'a’ =="A’

——toLower’Z’ ==z

digitTolnt :: Char —> Int
——digitToInt '8’ ==

intToDigit :: Int => Char
—— intToDigit 3 =="3

ord :: Char —> Int
chr :: Int => Char

—- Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—- the generator for values of a type
——in class Arbitrary, used by quickCheck

choose :: Random a=>(a, a) > Gena
—- Generates a random element in the given
—-inclusive range.

oneof :: [Gen a] —> Gen a
—- Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] —>Gena
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int —=> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int —> Gen a) —> Gen a
—— construct generators that depend on
—- the size parameter.

