Chalmers | GOTEBORGS UNIVERSITET 2018-01-11

Examiner: Thomas Hallgren, D&IT,
Answering questions at approx 15.00 (or by phone)

Functional Programming TDA 452, DIT 142

2018-01-11 14.00 - 18.00 Samhallsbyggnad

There are 5 questions with maximum 7 + 8 + 8 + 9 + 8 = 40 points. Grading;:
Chalmers: 3 = 20-26 points, 4 = 27-33 points , 5 = 34—40 points

GU:

G = 20-33 points, VG = 34-40 points

Results: latest approximately 10 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (7 points) The standard library function lookup,
lookup :: Eq key => key -> [(key,value)] -> Maybe value
lets you lookup the first value corresponding to a given key in a list of key-value pairs.

(a) (2 points) Define a function that returns all values paired with the given key.
lookupAll :: Eq key => key -> [(key,value)] -> [value]
For 2 points, use a list comprehension. Other solutions will be longer and give at
most 1 point.

(b) (2 points) Use 1lookupAll to make a simple, non-recursive definition of the standard
lookup function.

(¢) (3 points) Define a function update,
update :: Eq key => key -> value -> [(key,value)] -> [(key,value)]

that updates a list of key-value pairs. If the new key already exists in the list, the
value should be replaced, otherwise a new pair should be added to the list. The
order between the pairs in the list does not matter. Examples:

update ’x’ 5 [] == [(°x’,5)]

update ’x’ 5 [(’y’,3)] == [(’y’,3),(’x’,5)]
update ’x’ 5 [(’y’,3),(’x’,2),(z’,4)] == [(Cy’,3),(x’,6),(°z?,4)]

Solution:

-- (a)
lookupAll key kvs = [v]|(k,v)<-kvs,k==key]

-— (b)
lookup key = listToMaybe . lookupAll key

lookup_v2 key kvs = case lookupAll key kvs of

[1 -> Nothing

vi_ —> Just v
-- (e
-- If we assume that k does not appear multiple times in the list
update k v [] = [(k,v)]
update k v ((oldk,o0ldv):kvs) | oldk==

| otherwise

(oldk,v) : kvs
(oldk,o0ldv) : update k v kvs

-- If we update all occurrences of k in the list
update_v2 k v kvs
| null (lookupAll k kvs) = (k,v):kvs
| otherwise [(k’,if k’==k then v else v’) | (k’,v’)<-kvs]

-- If we remove all previous occurrences of k
update_v3 k v kvs = (k,v):[(k’,v’)|(k’,v’)<-kvs,k’/=k]

2. (8 points) Consider the following data types for representing arithmetic expressions with
multiplication, addition, subtraction and a variable X:

data Expr = X | Num Int | Op BinOp Expr Expr deriving (Eq,Show)
data BinOp = Add | Mul | Subtract deriving (Eq,Show)
exl = Op Subtract (Num 100) X -- 100 - X

ex2 = Op Add (Num 100) (Op Mul (Num (-1)) X) -- 100 + (-1)=X

(a)

(b)

(4 points) Define a function that computes the value of an expression, given the
value of the variable X. Example: eval exl 25 == 75.

eval :: Expr -> Int -> Int
(4 points) Although this data type can represent subtraction, it is not really needed

since an expression such as, for example, 100 - X can be written as 100 + (-1) * X.

Define a function
removeSub :: Expr -> Expr

which removes all subtraction operators in an expression by replacing them with a
combination of addition and multiplication as in the above example. For example,
removeSub exl == ex2.

Your definition should only remove the subtraction operators. It should not at-
tempt to simplify or evaluate the expression in any way.

Solution:

-- (a)
eval X X =X
eval (Num n) X =n
eval (Op op el e2) x = evalOp op (eval el x) (eval e2 x)
where evalOp Add = (+)
evalOp Mul = (%)
evalOp Subtract = (-)
eval_v2 X X =X
eval_v2 (Num n) X =n
eval_v2 (Op Add el e2) x = eval_v2 el x + eval_v2 e2 x
eval_v2 (Op Mul el e2) x = eval_v2 el x * eval_v2 e2 x
eval_v2 (Op Subtract el e2) x = eval_v2 el x - eval_v2 e2 x

-= (0
removeSub (Op op el e2) = binop op (removeSub el) (removeSub e2)
where binop Subtract el e2 = Op Add el (Op Mul (Num (-1)) e2)
binop op el e2 = Op op el e2
removeSub e =e

removeSub_v2 (Op Add el e2) = Op Add (removeSub_v2 el) (removeSub_v2 e2)
removeSub_v2 (Op Mul el e2) = Op Mul (removeSub_v2 el) (removeSub_v2 e2)
removeSub_v2 (Op Subtract el e2) = Op Add r1 (Op Mul (Num (-1)) r2)
where rl = removeSub_v2 el
r2 = removeSub_v2 e2

removeSub_v2 e = e

3. (8 points) For each of the following functions, give the most general type, or write ”No
type” if the definition is not type correct in Haskell.

fa x y = not (x && y)

fb (&) x y = not (x & y)
fc x y = (x+y)/2

fd x = [z | y<-x, z<-y]

Solution:

fa :: Bool -> Bool -> Bool
fb :: (a->b->Bool) -> a -> b -> Bool
fc :: Fractional a => a -> a -> a

fd :: [[al] -> [a]

4. (9 points) Consider the following data type for representing rectangular grids:

data Grid a = Grid [[al] deriving (Eq,Show)

gl,g2 :: Grid Int -- Example grids
gl = Grid [[1,2],

[3,4],

[5,61]

g2 = Grid [[5,3,1],
[6,4,2]]
(a) (2 points) Define a function that a applies a function to every element of a grid.
mapGrid :: (a->b) -> Grid a -> Grid b
(b) (2 points) Define a function that rotates a grid 90 degrees clockwise.
rotateGrid :: Grid a -> Grid a —-- Example: rotateGrid gl == g2

(¢) (3 points) Define a QuickCheck test data generator for rectangular grids, including
an instance in the Arbitrary class.

(d) (2 points) Define a property that expresses the fact that rotating a rectangular
grid four times returns the grid you started with.

Hint: The above functions are easier to define by reusing suitable library functions
than by using recursion on lists.

Solution:

-- (a)
mapGrid f = Grid . map (map f) . rows

-— ()

rotateGrid = Grid . map reverse . transpose . rows
rotateGrid_v2 = Grid . transpose . reverse . rows

rows (Grid rs) = rs -- a common helper function

-- (o)
instance Arbitrary a => Arbitrary (Grid a) where
arbitrary = do height <- choose (1,10)
width <- choose (1,10)
rows <- vectorOf height (vectorOf width arbitrary)
return (Grid rows)

-— (d
—--prop_rotateGrid4 :: Eq a => Grid a -> Bool -- (%)
prop_rotateGrid4 :: Grid Int -> Bool
prop_rotateGridd g =(r . r . r . r) g ==
where r = rotateGrid
—-- (*) Both types are OK. The property holds for all types of grids, as long
-- as we can test that two grids are equal, but for testing with QuickCheck,
-- we need to choose a particular type.

prop_rotateGrid4_v2 g = iterate rotateGrid g !! 4 == g

5. (8 points) Write a Haskell function
checkHaskellFiles :: I0 ()

that examines the Haskell source files in the current directory and reports the ones that
contain lines that are too long. To be more specific:

e For each Haskell file that contains lines that are too long, the function should
report how many lines are too long.

e Lines are too long if they contain more than 78 characters. A Haskell file that does
not contain any lines that are too long is OK.

e The report should not mention Haskell files that are OK. The report should be
empty if all Haskell files are OK.

e Haskell source files have names that end with .hs. Other files can be present, but
they should be ignored.

Example: if the current directory contains the files A.hs (which is OK), B.hs, C.hs,
D.hs and E.pdf (which is not a Haskell source file), the report might look like this:

B.hs: one line is too long
C.hs: 5 lines are too long
D.hs: 12 lines are too long

Hint: In addition to the library functions listed at the back of this exam, the following
library functions might be useful:

—-- Functions to output text
putStr, putStrLn :: String -> I0 ()

-- listDirectory returns the names of all the files in a directory
listDirectory :: FilePath -> IO [FilePath]

—- readFile reads the contents of a file
readFile :: FilePath -> I0 String

-- File names are strings. The name of the current directory is "."
type FilePath = String

Solution:

checkHaskellFiles =
do files <- listDirectory "."
sequence_ [checkHaskellFile f | f<-files,".hs" ‘isSuffix0f‘¢ f]

where
checkHaskellFile file =
do s <- readFile file
let long = length [1 | 1<-lines s, length 1>78]
case long of
0 -> return O
1 -> putStrLn (file++": one line is too long")
_ —> putStrLn (file++": "++show long++" lines are too long")

checkHaskellFiles_v2 =
do hfs <- listHaskellFiles ".
hfcs <- zip hfs <$> mapM readFile hfs
putStr (concatMap reportHaskellFile hfcs)

where
listHaskellFiles dir =
do files <- listDirectory "."
return [f | f<-files,".hs" ‘isSuffix0f‘ f]

reportHaskellFile :: (FilePath,String) -> String

reportHaskellFile (filename,sourcecode) =
case length [() | line<-lines sourcecode, length line>78] of

0 -> nn
1 -> filename++": one line is too long\n"
n -> filename++": "++show n++" lines are too long\n"

ﬁl
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

-}

—— standard type classes

class Showa where

show : a -> String
class Eqa where
(==), (I7) © a —>a —>Bool
class (Eqa)=>0Orda where
(<), (=9), >3), () a ->a —>Bool
max, min Ta —>a —>a
class (Eqa, Show a) => Num a where
(). (2, () na —>a —>a
negate Da —>a
abs, signum D a —>a
frominteger . Integer ->a
class (Num a, Ord a) => mmm_ a where
toRational ' a —>Rational
class (Real a, Enum 8 = _:Hm@ﬂm_ a where
quot, rem T a —>a ->a
div, mod T a —>a —>a
tolnteger ©a —>lInteger
class (Num a) => _uqmo:o:m_ a where
() .. ->a ->a
fromRational i xm:o:m_ ->a
class (Fractional a) => _u_om::@ a where
exp, log, sqrt Ta —>a
sin, cos, tan D a —>a
class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a ->b
ceiling, floor (Integral b) => a ->b
—— numerical functions
even, odd .. (Integral @) => a —> Bool
evenn =n ‘rem' 2=
odd =not . even
—— monadic functions
sequence ::Monad m=>[ma] —>m [a]
sequence = foldr mcons (return 0)
where mconspq= do x<-p
Xs<-q
return (x 1 XS)
sequence_ :Monad m=>[ma]->m()
sequence_ Xs = do sequence xs

return ()

liftM :: (Monad m)=>(@al->r)->mal->mr
litMfml = do x1<-ml
return (f x1)

—— functions on functions

id ta->a

id x =X

const ra->b->a

constx =X

@] i (b ->c) ->(@ ->b) ->a ->c
=\x ->1(gx)

flip t(@->b->c)->b->a->c

fipfxy =fyx

($) (@ ->b) ->a ->b

f$ x =fx

—— functions on Bools

data Bool = False | True

(&&), () ' Bool ->Bool -—>Bool
True && X =X

False && _ = False

True || _ =True

False || x =X

not :: Bool —> Bool

not True = False

not False =True

—- functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True

isJust Nothing = False
isNothing i Maybe a —> Bool
isNothing = not . isJust
fromJust :»Maybe a —>a
fromJust Justa) = a
maybeToList :: Maybe a —> [a]
maybeToList Nothing = 1]
maybeTolList (Justa) = [a]
listToMaybe :: [a] —> Maybe a
listToMaybe [= Nothing
listToMaybe (a :_) = Justa
catMaybes :<_m<cm al —>[a]

catMaybes Is = [x]Justx <—1Is]

—- functions on pairs

fst t(ab)—>a

fst (x,y) = X

snd t(ab)—>b
snd (x.y) =Yy

swap i (a,b) —> (b,a)

swap (a,b) =(b,a)

curry :((@, b)->c)—>a->b->c
curry fxy = f(x,y)

uncurry > (@->b ->c¢) —>((a, b) —>¢)
uncurry fp = f(fst p) (snd p)

—- functions on lists

map :: (@ —> b) —> [a] => [b]

map f xs = [fx]x<-xs]
(++) = [a] ->[a] —> [4]
xs ++ys = foldr (1) ys xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [X|x<-xs,px]

concat :: [[a]] —> [a]
concat xss = foldr (++) [l xss

concatMap :: (a —> [b]) —> [a] —> [b]
concatMap f = concat . map f

head, last t[al—>a

head (x :_) =X

last [x] =X

last(_ :xs) =lastxs

tail, init :[a] —> [a]

tal (. :xs) =xs

init [x] = 1|

init(x :xs) =x :initxs
null :: [a] => Bool

null] =True

null(C @) = False

length :[a] —> Int

length = foldr (const (1+)) 0
(" : [a] —>Int ->a
x:)"no =x

(C:xs)hn =xs!l(n-1)

foldr =(@a->b VS >b->[a]—>b
foldr f z 1]
foldr f z (x : xmv = ﬁx (foldr f z xs)

foldl :(a->b vmv ->a->[b]->a
foldl f z 0

foldl f z (x xmv = ﬁo_g_ f(fzx)xs

iterate t(@a->a)->a->[a]

iterate fx = X iterate f (f x)
repeat ra->[a]

repeat x = Xs where xs=x :Xxs
replicate slint—>a->[a]

replicate n x = take n (repeat x)

cycle :[a] =>[a]

cycle] = error"

cycle xs = xs' where xs' = xs ++ xs'’
tails = [a] —> [[a]]
tails xs = Xs : case xs of
0 -
_ :xs' —>tails xs’
take, drop 2 Int —>[a] —> [a]
taken_ |n<=0= 0
take _] = 1
taken (x :xs) =X . take (n—-1) xs
dropnxs |n<=0= xs
drop _] = I
dropn(_ :Xxs) = drop (n—1) xs
splitAt 2 Int => [a] —> ([a],[a])
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p 1] = 1]
takeWhile p (x I XS)
| px =X . takeWhile p xs
| otherwise = 1]
dropWhile p 1] = 1]
dropWhile p xs@(x : xs’)
| px = dropWhile p xs’

| otherwise = xs

span :: (a —> Bool) —> [a] —> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String —> [String]
- _m:mw "apa\nbepa\ncepa\n"
- ==['apa’,"bepa’,"cepa’]
- <<oam ‘apa bepa\n cepa"
—— ==["apa","bepa","cepa’]

unlines, unwords :: [String] —> String
—— unlines ["apa”, __cmum__ "cepa"]

- == "apa\nbepa\ncepa"
- c:<<oam ["apa","bepa”,"cepa"]
- == "apa bepa cepa"

reverse :[a] —> [a]
reverse = foldl (flip () 0
and, or :: [Bool] —> Bool
and = foldr (&&) True
or = foldr (||) False
any, all i (a —> Bool) —> [a] —> Bool
any p = or.mapp
allp = and.mapp
elem, notElem :: (Eqa)=>a —>[a] —> Bool
elem x = any (==x)
notElem x = all (I=x)
lookup : (Eqa)=>a->][(a,b)] > Maybe b
lookup key 1] = Nothing
lookup key ((x,y) 1 XyS)
| key ==x = Justy

| otherwise = lookup key xys

Prelude.cycle: empty list"

sum, product :: (Numa)=>[a] —>a
sum = foldl (+) O
product = foldl (*) 1

maximum, minimum :: (Ord a) =>[a] —> a
maximum [] =error" Prelude.maximum: empty list"
maximum (X : xs) = foldl max x xs

minimum [] =error" Prelude.minimum: empty list"
minimum (x : xs) = foldl min x xs
zip = [a] => [b] —>[(a,b)]
zip = zIpWith (,)
zipWith i1 (@—>b—>c) —> [a]->[b]->[c]
zipWith z (a ;as) (b :bs)
=zab : zipWith z as bs
zipWith _ = 1
unzip (@ b)] —> ([al.[b])
unzip
foldr (\(a,b) Amw bs) —>(a:asb:bs)(0 .0)
nub :Eqa=>[a] ->[a]
nub [= 0
nub (X :xs) =
X cnub [y|ly<—-xs,x/=y]
delete ©Ega=>a->[a] —>[a]
delete y 1 = I
delete y (x IXS) =
if x== then xs else x : deleteyxs
() o Ega=> [a] ->[a] —> [a]
\) = foldl (flip o_m_mﬁmv
union 2Ega=>[a] —>[a] —> [a]
union xsys = xs ++ (ys \\ xs)
intersect 2 Eqa=>[a] —>[a] —>[a]
intersect xs ys = [X]x<=xs,x ‘elem’ ys]
intersperse ::a->[a] —>[a]
——intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0,4]
transpose = [[al] —> [[a]]
- :m:mvomm E 2,3],[4,5,6]]
==[[1,4],[2,5],[3,6]]

ition :: (a —> Bool) —> [a] —> ([a],[a])
on pxs =
er p xs, filter (not . p) xs)

group = Eqa=>[a] —>[[a]]
group = groupBy (==)

groupBy :: (a —>a —> moo_v > [a] —> [[a]]

groupBy _] 0

groupBy eq (x xwv = (X 1ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] —> [a] —> Bool

isPrefixOf 1 _ = True
isPrefixOf _ 1 = False
isPrefixOf (x 1XS)(y :ys)= x==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSuffixOf x y = reverse x

‘isPrefixOf reverse y
sort ::(Ord a) => [a] —> [a]
sort = foldr insert 1]
insert ::(Ord mv =>a —>[a] —> [a]
insert x : [x]

insert x (y : xmv
if x<=y then x:y:xs else y :insertxxs

—- functions on Char
type String = [Char]

toUpper, toLower :: Char —> Char
—-—toUpper 'a’ =="A’

——toLower’Z’ ==z

digitTolnt :: Char —> Int
——digitToInt '8’ ==

intToDigit :: Int => Char
—— intToDigit 3 =="3

ord :: Char —> Int
chr :: Int => Char

—- Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—- the generator for values of a type
——in class Arbitrary, used by quickCheck

choose :: Random a=>(a, a) > Gena
—- Generates a random element in the given
—-inclusive range.

oneof :: [Gen a] —> Gen a
—- Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] —>Gena
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int —=> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int —> Gen a) —> Gen a
—— construct generators that depend on
—- the size parameter.

