Chalmers | GOTEBORGS UNIVERSITET 2017-04-11

Examiner: Thomas Hallgren, D&IT,
Answering questions at approx 15.00 (or by phone)

Functional Programming TDA 452, DIT 142

2017-04-11 14.00 - 18.00 “Maskin”-salar (M)

There are 6 questions with maximum 6 +8 + 6 + 5 + 5 4+ 10 = 40 points. Grading:
Chalmers: 3 = 20-26 points, 4 = 27-33 points , 5 = 34—40 points

GU:

G = 20-33 points, VG = 34-40 points

Results: latest approximately 10 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (6 points) Given the following type for trees,
data Tree a = Leaf a | Branch (Tree a) (Tree a) deriving (Eq,Show)
t = Branch (Leaf 5) (Branch (Leaf 1) (Leaf 10)) -- an example tree

define
e a function that computes the sum of the values in a tree, and

e a function that finds the minimum element in a tree.

sumTree :: Num a => Tree a -> a -- Example: sumTree t == 16
minTree :: Ord a => Tree a -> a -- Example: minTree t

1]
1]
—

While these functions can be defined as two separate recursive functions, they will be
very similar, so this solution will give you at most 4 points. For full points, define a
(recursive) helper function that captures the common pattern, and make sumTree and
minTree two simple (non-recursive) functions that call the helper function.

Solution:

foldTree :: (a->a->a) -> Tree a -> a
foldTree f (Leaf a) = a
foldTree f (Branch 1 r) = f (foldTree f 1) (foldTree f r)

foldTree (+)
foldTree min

sumTree
minTree

—- Alternative solution:
sumTree’ (Leaf a) = a

sumTree’ (Branch 1 r) sumTree’ 1 + sumTree’ T

minTree’ (Leaf a) = a
minTree’ (Branch 1 1)

min (minTree’ 1) (minTree’ r)

-— Another alternative solution:

tolList :: Tree a -> [a]

toList (Leaf a) = [a]

toList (Branch 1 r) = tolList 1 ++ tolist r

sumTree’’ :: Num a => Tree a -> a
minTree’’ :: Ord a => Tree a -> a
sumTree’’ = sum . tolList

minTree’’ minimum . tolList

2. (8 points)
(a) (3 points) Reimplement the following function by using recursion directly, travers-

ing the argument list only once.

splitAt :: Int -> [a] -> ([al,[al)
splitAt n xs = (take n xs,drop n xs)

Solution:

splitAt :: Int -> [a] -> ([a],[al)

splitAt n xs | n<=0 = ([],xs)

splitAt _ [1 = (00,0

splitAt n (x:xs) = (x:ys,zs) where (ys,zs) = splitAt (n-1) xs

-- For testing, not part of the solution
prop_splitAt n xs = splitAt n xs == (take n xs,drop n xs)

(b) (3 points) Define a function chunks0f that splits a lists into chunks of the length
indicated by the first argument.

chunks0f :: Int -> [a] -> [[a]]

-- Example: chunksOf 4 [1..10] == [[1,2,3,4],[5,6,7,8],[9,10]]

Solution:

chunksOf n []
chunksOf n xs

(]

xsl:chunks0f n xs2 where (xs1,xs2) = splitAt n xs

(¢) (2 points) Write a property that describes what the expected length of chunks0Of n xs
is, depending on n and xs.

Solution:

prop_length_chunksOf n xs =
n>0 ==> length (chunksOf n xs) == (length xs+(n-1)) ‘div‘ n

3. (6 points) For each of the following functions, give the most general type, or write No
type if the definition is not type correct in Haskell.

fa x = [x,x]
fb x y = if x then y else -y
fc (f,g) (x,y) = (f x,g y)

Solution:
fa :: x > [x]
fb :: Num a => Bool -> a -> a

fc :: (a->b,c—>d) > (a,c) —> (b,d)

4. (5 points) Given the following data types for playing cards and hands of playing cards,

data Card = ... deriving (Eq,Show) -- the details are unimportant
data Hand = Empty | Add Card Hand deriving (Eq,Show)

rCard :: Gen Card -- generates a random Card
define a QuickCheck test data generator
rHand :: Gen Hand

that generates a random hand of cards that contains at least one card, at most 6 cards,
and doesn’t contain the same card twice.

Solution:

rHand = do size <- choose (1,6)
cards <- vector0f size rCard
return (toHand (nub cards))
where
toHand :: [Card] -> Hand
toHand [] = Empty
toHand (c:cs) = Add c¢ (toHand cs)

5. (5 points) Consider the following imperative style function that prints a string inside a
frame of asterisks:

printFramed :: String -> I0 O

printFramed s = -— printFramed " Hello world "
do putStars (n+2) -

putStr "\nx" —— kstoksokskokskok ok ok ok

putStr s -- % Hello world *

putStr "*\n" —— ksokstokokokskok ok ok ok

putStars (n+2)

putStr "\n"

where

n = length s

putStars 0 = return ()
putStars n = do putStr "x"
putStars (n-1)

Write a shorter, functional style implementation that produces the same output:

printFramed s = putStr (framed s)
framed :: String -> String
framed s = ...

To keep the definition short, use appropriate predefined functions instead of your own
recursive functions.

Solution:

framed :: String -> String

framed s = stars ++ "\n*x" ++ s ++ "*\n" ++ stars ++ "\n"
where

stars = replicate n ’*’
n = length s + 2

6. (10 points) Consider the following representation of a simple variant of XML:

type TagName = String -- A few lowercase letters ’a’..’z’

data XML = Text String -- Arbitrary text
| Elem TagName [XML] -- A tagged element <t>...</t>
deriving (Eq,Show)

(a) (3 points) Write a function

tableToXML :: [[String]] -> XML

that takes a table (represented as a list of rows of cells) and creates an HTML
table for it (assuming here that HTML is an instance of XML). Example:

tableTOXML [[HAII’"BH] s [llC"’“Dll]] ==
Elem "table" [Elem "tr" [Elem "td" [Text "A"],Elem "td" [Text "B"]],
Elem "tr" [Elem "td" [Text "C"],Elem "td" [Text "D"]]]

Solution:

tableToXML rows = Elem "table" (map rowToXML rows)
where

rowToXML row

cellToXML cell

Elem "tr" (map cellToXML row)
Elem "td" [Text cell]

(b) (5 points) Write a function
showXML :: XML -> String

that outputs the textual representation of an XML document. Some characters in
the text in the XML document need to be treated specially: since < starts a tag,
any < in text should be output as &1t;, and any & should be output as &.

Examples:

showXML (Elem "td" [Text "hello"]) == "<td>hello</td>"
showXML (Text "this & that") == "this & that"
showXML (Elem "td" [Text "4 < 5"]) == "<td>4 &1lt; 5</td>"

Solution:

showXML (Text s) = escape s
showXML (Elem tag xml) = start tag++concatMap showXML xml++end tag

start,end :: TagName -> String
start tag = "<"++tag++">"
end tag = start (°/’:tag)

escape :: String -> String
escape s = concatMap escapel s
where
escapel ’<’ = "<"
escapel ’&’ = "&"
escapel ¢ = [c]

(¢) (2 points) Use the two functions above to define a function that creates the HTML
code for a table containing values of an arbitrary type in the Show class:

renderTable :: Show a => [[al] -> String
Example:

renderTable [[1,2],[3,4]] ==
"<table><tr><td>1</td><td>2</td></tr>"++
"<Er><td>3</td><td>4</td></tr></table>"

Solution:

renderTable = showXML . tableToXML . map (map show)

ﬁl
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

-}

—— standard type classes

class Showa where

show : a -> String
class Eqa where
(==), (I7) © a —>a —>Bool
class (Eqa)=>0Orda where
(<), (=9), >3), () a ->a —>Bool
max, min Ta —>a —>a
class (Eqa, Show a) => Num a where
(). (2, () na —>a —>a
negate Da —>a
abs, signum D a —>a
frominteger . Integer ->a
class (Num a, Ord a) => mmm_ a where
toRational ' a —>Rational
class (Real a, Enum 8 = _:Hm@ﬂm_ a where
quot, rem T a —>a ->a
div, mod T a —>a —>a
tolnteger ©a —>lInteger
class (Num a) => _uqmo:o:m_ a where
() .. ->a ->a
fromRational i xm:o:m_ ->a
class (Fractional a) => _u_om::@ a where
exp, log, sqrt Ta —>a
sin, cos, tan D a —>a
class (Real a, Fractional a) => RealFrac a where
truncate, round (Integral b) => a ->b
ceiling, floor (Integral b) => a ->b
—— numerical functions
even, odd .. (Integral @) => a —> Bool
evenn =n ‘rem' 2=
odd =not . even
—— monadic functions
sequence ::Monad m=>[ma] —>m [a]
sequence = foldr mcons (return 0)
where mconspq= do x<-p
Xs<-q
return (x 1 XS)
sequence_ :Monad m=>[ma]->m()
sequence_ Xs = do sequence xs

return ()

liftM :: (Monad m)=>(@al->r)->mal->mr
litMfml = do x1<-ml
return (f x1)

—— functions on functions

id ta->a

id x =X

const ra->b->a

constx =X

@] i (b ->c) ->(@ ->b) ->a ->c
=\x ->1(gx)

flip t(@->b->c)->b->a->c

fipfxy =fyx

($) (@ ->b) ->a ->b

f$ x =fx

—— functions on Bools

data Bool = False | True

(&&), () ' Bool ->Bool -—>Bool
True && X =X

False && _ = False

True || _ =True

False || x =X

not :: Bool —> Bool

not True = False

not False =True

—- functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True

isJust Nothing = False
isNothing i Maybe a —> Bool
isNothing = not . isJust
fromJust :»Maybe a —>a
fromJust Justa) = a
maybeToList :: Maybe a —> [a]
maybeToList Nothing = 1]
maybeTolList (Justa) = [a]
listToMaybe :: [a] —> Maybe a
listToMaybe [= Nothing
listToMaybe (a :_) = Justa
catMaybes :<_m<cm al —>[a]

catMaybes Is = [x]Justx <—1Is]

—- functions on pairs

fst t(ab)—>a

fst (x,y) = X

snd t(ab)—>b
snd (x.y) =Yy

swap i (a,b) —> (b,a)

swap (a,b) =(b,a)

curry :((@, b)->c)—>a->b->c
curry fxy = f(x,y)

uncurry > (@->b ->c¢) —>((a, b) —>¢)
uncurry fp = f(fst p) (snd p)

—- functions on lists

map :: (@ —> b) —> [a] => [b]

map f xs = [fx]x<-xs]
(++) = [a] ->[a] —> [4]
xs ++ys = foldr (1) ys xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [X|x<-xs,px]

concat :: [[a]] —> [a]
concat xss = foldr (++) [l xss

concatMap :: (a —> [b]) —> [a] —> [b]
concatMap f = concat . map f

head, last t[al—>a

head (x :_) =X

last [x] =X

last(_ :xs) =lastxs

tail, init :[a] —> [a]

tal (. :xs) =xs

init [x] = 1|

init(x :xs) =x :initxs
null :: [a] => Bool

null] =True

null(C @) = False

length :[a] —> Int

length = foldr (const (1+)) 0
(" : [a] —>Int ->a
x:)"no =x

(C:xs)hn =xs!l(n-1)

foldr =(@a->b VS >b->[a]—>b
foldr f z 1]
foldr f z (x : xmv = ﬁx (foldr f z xs)

foldl :(a->b vmv ->a->[b]->a
foldl f z 0

foldl f z (x xmv = ﬁo_g_ f(fzx)xs

iterate t(@a->a)->a->[a]

iterate fx = X iterate f (f x)
repeat ra->[a]

repeat x = Xs where xs=x :Xxs
replicate slint—>a->[a]

replicate n x = take n (repeat x)

cycle :[a] =>[a]

cycle] = error"

cycle xs = xs' where xs' = xs ++ xs'’
tails = [a] —> [[a]]
tails xs = Xs : case xs of
0 -
_ :xs' —>tails xs’
take, drop 2 Int —>[a] —> [a]
taken_ |n<=0= 0
take _] = 1
taken (x :xs) =X . take (n—-1) xs
dropnxs |n<=0= xs
drop _] = I
dropn(_ :Xxs) = drop (n—1) xs
splitAt 2 Int => [a] —> ([a],[a])
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p 1] = 1]
takeWhile p (x I XS)
| px =X . takeWhile p xs
| otherwise = 1]
dropWhile p 1] = 1]
dropWhile p xs@(x : xs’)
| px = dropWhile p xs’

| otherwise = xs

span :: (a —> Bool) —> [a] —> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String —> [String]
- _m:mw "apa\nbepa\ncepa\n"
- ==['apa’,"bepa’,"cepa’]
- <<oam ‘apa bepa\n cepa"
—— ==["apa","bepa","cepa’]

unlines, unwords :: [String] —> String
—— unlines ["apa”, __cmum__ "cepa"]

- == "apa\nbepa\ncepa"
- c:<<oam ["apa","bepa”,"cepa"]
- == "apa bepa cepa"

reverse :[a] —> [a]
reverse = foldl (flip () 0
and, or :: [Bool] —> Bool
and = foldr (&&) True
or = foldr (||) False
any, all i (a —> Bool) —> [a] —> Bool
any p = or.mapp
allp = and.mapp
elem, notElem :: (Eqa)=>a —>[a] —> Bool
elem x = any (==x)
notElem x = all (I=x)
lookup : (Eqa)=>a->][(a,b)] > Maybe b
lookup key 1] = Nothing
lookup key ((x,y) 1 XyS)
| key ==x = Justy

| otherwise = lookup key xys

Prelude.cycle: empty list"

sum, product :: (Numa)=>[a] —>a
sum = foldl (+) O
product = foldl (*) 1

maximum, minimum :: (Ord a) =>[a] —> a
maximum [] =error" Prelude.maximum: empty list"
maximum (X : xs) = foldl max x xs

minimum [] =error" Prelude.minimum: empty list"
minimum (x : xs) = foldl min x xs
zip = [a] => [b] —>[(a,b)]
zip = zIpWith (,)
zipWith i1 (@—>b—>c) —> [a]->[b]->[c]
zipWith z (a ;as) (b :bs)
=zab : zipWith z as bs
zipWith _ = 1
unzip (@ b)] —> ([al.[b])
unzip
foldr (\(a,b) Amw bs) —>(a:asb:bs)(0 .0)
nub :Eqa=>[a] ->[a]
nub [= 0
nub (X :xs) =
X cnub [y|ly<—-xs,x/=y]
delete ©Ega=>a->[a] —>[a]
delete y 1 = I
delete y (x IXS) =
if x== then xs else x : deleteyxs
() o Ega=> [a] ->[a] —> [a]
\) = foldl (flip o_m_mﬁmv
union 2Ega=>[a] —>[a] —> [a]
union xsys = xs ++ (ys \\ xs)
intersect 2 Eqa=>[a] —>[a] —>[a]
intersect xs ys = [X]x<=xs,x ‘elem’ ys]
intersperse ::a->[a] —>[a]
——intersperse 0 [1,2,3,4] ==[1,0,2,0,3,0,4]
transpose = [[al] —> [[a]]
- :m:mvomm E 2,3],[4,5,6]]
==[[1,4],[2,5],[3,6]]

ition :: (a —> Bool) —> [a] —> ([a],[a])
on pxs =
er p xs, filter (not . p) xs)

group = Eqa=>[a] —>[[a]]
group = groupBy (==)

groupBy :: (a —>a —> moo_v > [a] —> [[a]]

groupBy _] 0

groupBy eq (x xwv = (X 1ys) : groupBy eq zs
where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] —> [a] —> Bool

isPrefixOf 1 _ = True
isPrefixOf _ 1 = False
isPrefixOf (x 1XS)(y :ys)= x==y

&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSuffixOf x y = reverse x

‘isPrefixOf reverse y
sort ::(Ord a) => [a] —> [a]
sort = foldr insert 1]
insert ::(Ord mv =>a —>[a] —> [a]
insert x : [x]

insert x (y : xmv
if x<=y then x:y:xs else y :insertxxs

—- functions on Char
type String = [Char]

toUpper, toLower :: Char —> Char
—-—toUpper 'a’ =="A’

——toLower’Z’ ==z

digitTolnt :: Char —> Int
——digitToInt '8’ ==

intToDigit :: Int => Char
—— intToDigit 3 =="3

ord :: Char —> Int
chr :: Int => Char

—- Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—- the generator for values of a type
——in class Arbitrary, used by quickCheck

choose :: Random a=>(a, a) > Gena
—- Generates a random element in the given
—-inclusive range.

oneof :: [Gen a] —> Gen a
—- Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] —>Gena
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int —=> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int —> Gen a) —> Gen a
—— construct generators that depend on
—- the size parameter.

