Chalmers | GOTEBORGS UNIVERSITET 2016-04-07

Examiner:

David Sands dave@chalmers.se.

Answering questions on the day of the exam (at approx 15.00):
Gregoire Detrez (tel: 073 55 69 550) — and at other times by phone.

, D&IT

Functional Programming TDA 452, DIT 142
2016-04-07 14.00 - 18.00 “Maskin”-salar (M)

Contact on the day, Gregoire: 073 55 69 550

There are 4 Questions with maximum 10 + 10 + 12 4+ 8 = 40 points; a total of 20 points

definitely guarantees a pass.

Results: latest Within approximately 20 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

Full points are given to solutions which are short, elegant, and correct. Fewer points
may be given to solutions which are unnecessarily complicated or unstructured.

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

Question 1. (10 points)

(i)

(if)

(iii)

(4 points) Give a definition of a function

range :: Ord a => [a] -> (a,a)

which computes the largest and smallest values (as a pair) of the values in the
given list. You may assume that the argument to range is non-empty. Example:
prop_range = range [9,8,0,6] == (0,9) && range [1] == (1,1)

For full points your definition should use a single tail-recursive helper function.
Other correct solutions give max 2 points. Solution

range (n:ns) = r (n,n) ns where
r (s,b) [] = (s,b)

r (s,b) (m:ms) r (s ‘min® m, b ‘max‘ m) ms

(4 points) Define a function

splitOne0f :: Eq a => [a] -> [a] -> [[a]]

which splits its second argument list into chunks at every element in the first list,
and satisfies the following property:

prop_splitOne0f0 :: Eq a => [a] -> Bool
prop_splitOne0f0 as =

splitOneOf ";:" "A;BB:;DDDD:" == ["A","BB","","DDDD",""]
&% splitOneOf [2,3,4] [3,0,1,2,0,0] == [[1,[0,11,[0,01]
&% splitOneOf as [] == [[1]
&& splitOneOf [] as == [as]

Hint: a recursive definition over the second argument using span may be simplest.
Solution

splitOneO0f sep xs =
case span (‘notElem‘ sep) xs of
(c, [1) -> [c]
(c, _:r) => ¢ : splitOneOf sep r

(2 points) Describe the expected property of the expression length (splitOneOf sep xs)
as a function

prop_splitOne0f :: [Int] -> [Int] -> Bool
Solution

prop_splitOneOf sep as =
length (splitOneOf sep as) == length (filter (‘elem‘ sep) as) + 1

Question 2. (10 points)

(i) (6 points) For each of the following functions, give the most general type.

famnl-= m ‘lookup® zip 1 n
b [] =[]
fb (b:c) = (map b) : fb c

fc (a:b) (c:d)
fc

a/=cé&& fc b d
True

Solution

fa :: Eq a => a -> [b] -> [a] -> Maybe b
fb :: [a > bl > [[a]l->[b]]
fc :: Eq t => [t] -> [t] -> Bool

(ii) (4 points) Functions fb and fc are explicitly recursive. Rewrite them so that they
use standard functions (listed at the back of this exam) and/or list comprehensions,
instead of explicit recursion.

Solution

fb’ = map map
fc’ as bs = and $ zipWith (/=) as bs

Question 3. (12 points) A Sudoku puzzle consists of a 9x9 grid. Some of the cells in the grid have
digits (from 1 to 9), others are blank. The objective of the puzzle is to fill in the blank
cells with digits from 1 to 9, in such a way that every row, every column and every 3x3
block has exactly one occurrence of each digit 1 to 9.

In lab 3 you represented a sudoku board using the type data Sudoku = Sudoku [[Maybe Int]].
In this question you are to use a simpler type

type Sudoku = [[Int]]

In this representation, O represents the blank cell. An example sudoku is

ex = [[3,6,0,0,7,1,2,0,0],
[0,5,0,0,0,0,1,8,0],
[0,0,9,2,0,4,7,0,0],
[0,0,0,0,1,3,0,2,8],
[4,0,0,5,0,2,0,0,91,
[2,7,0,4,6,0,0,0,0],
[0,0,5,3,0,8,9,0,01,
(0,8,3,0,0,0,0,6,01,
[0,0,7,6,9,0,0,4,3]]

(i) (3 points) Define a function
allBlanks :: Sudoku -> [(Int,Int)]

that returns the positions of all blank cells in the given Sudoku. For example,
allBlanks ex includes (amongs others) the positions [(2,0),(3,0),(7,0),(8,0)]
corresponding to the blanks in the first row.

You may assume that the sudoku is well-formed. Solution

allBlanks s =
[(x,y) | (y,row) <- zip [0..] s,
(x,0) <- zip [0..] row]

(ii) (3 points) Define a function

updateWith :: Int -> (Int,Int) -> Sudoku -> Sudoku

where updateWith n (x,y) s produces a Sudoku from s by updating the position
(x,y) with the value n. So for example, updateWith 4 (2,0) ex would result in
the sudoku which is like ex except that it has a 4 instead of a blank (0) at the
first blank on the first row. You may assume that the position is always inside the
given list of rows. Solution

updateWith n (x,y) rs =
rowsBefore ++ [cellsBefore ++ [n] ++ cellsAfter] ++ rowsAfter
where
(rowsBefore, row:rowsAfter)
(cellsBefore, _:cellsAfter)

splitAt y rs
splitAt x row

(iii) (6 points)
arbPuzzle :: Sudoku -> Int -> Gen Sudoku

Which given a Sudoku s and a positive integer n (where we assume that there are
at least n non-blank cells in s) gives a quickCheck generator for random Sudoku
obtained from s by making exactly n non-blank cells into blanks. Solution

arbPuzzle s n = do
dellist <- take n ‘fmap‘ shuffle nonblanks
return $ foldr (updateWith 0) s dellist

where nonblanks = [(x,y) | x <~ [0..8], y <= [0..8]] \\ allBlanks s

shuffle [] return []
shuffle xs do
a <- elements xs
as <- shuffle (delete a xs)
return $ a : as

Question 4. (8 points)

(i)

(if)

(4 points) Define a Haskell datatype AExpr to represet arithmetic expressions in-
cluding the following kind of expression:

if x > 3.14 && y < O then sin (y + 1) else cos (y * 3)

Your type should permit any arithmetic expressions built from floating point num-
bers, variables (assumed to be of type Float), arithmetic operators (+,%,-,~), unary
operators (sin, cos, tan, abs), if-then-else, comparison operators (==, >, <, <,
>), and boolean combinations (&&, |).

You should make use the following types in your definition:

type VarName = String

Add | Mul | Sub | Power
Sin | Cos | Tan | Abs
GT | LT | GEQ | LEQ -- (>, <, >=, <=)

data BinaryOp
data UnaryOp
data CompOp

data LogicOp = And | Or
Solution
data AExp = Var VarName | If BExp AExp AExp | Num Double

Binary BinaryOp AExp AExp | Unary UnaryOp AExp

data BExp = Compare CompOp AExp AExp
| Combine LogicOp BExp BExp

Your type should not allow invalid arithmetic expressions, such as the following,
to be represented:

if x then 1 else O (since x represents a number)

x > 3.14 (since the result is not a floating-point number)

2 && 3 (since numbers are not boolean expressions)

(1 > 0) > (1 < 0) (since comparison is only allowed on numbers)

(4 points) Define a function

vars :: AExp -> [VarName]

which, given an expression computes a list of all the variable names appearing in
that expression. A variable name should not appear in the result more than once.
Solution

vars e = nub $ avars e

where avars (Var s) = [s]
avars (If b al a2) = bvars b ++ avars al ++ avars a2
avars (Binary _ al a2) = avars al ++ avars a2
avars (Unary _ a) = avars a

bvars (Compare _ al a2) = avars al ++ avars a2
bvars (Combine _ bl b2) = bvars bl ++ bvars b2

*|
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

-}

—— standard type classes

class Show a where
show :: a —> String

class Eq a where
(==), (/=) :: a => a —> Bool

class (Eq a) => Ord a where
(<), (<=), (>=), (>) :: a => a —> Bool
max, min t: a->a->a

class (Eq a, Show a) => Num a where
(), (=), (%) : a->a->a

negate :a->a
abs, signum :ta—>a
fromInteger : Integer -> a

class (Num a, Ord a) => Real a where
toRational :: a —> Rational

class (Real a, Enum a) => Integral a where

quot, rem 2 a —>a->a
div, mod :a->a->a
toInteger :: a —> Integer

class (Num a) => Fractional a where
(/) tra->a->a
fromRational :: Rational -> a

class (Fractional a) => Floating a where
exp, log, sqgrt :a->a
sin, cos, tan :a->a

o oo

class (Real a, Fractional a) => RealFrac a where
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a —> b

—— numerical functions

even, odd :: (Integral a) => a —> Bool
even n =n ‘rem’ 2 == 0
odd not . even

—— monadic functions

sequence 22 Monad m => [m a] —> m [a]
sequence = foldr mcons (return [])
where mcons p g = do x <- p
Xs <- q
return (x:xs)

mm@:mbnnl nnzdbmmsuv~5m~lvsay
sequence_ xs = do sequence Xxs
return ()

1iftM :: (Monad m) => (al -=> r) -=>mal ->m r
1iftM £ ml = do x1 <- ml
return (f x1)

—— functions on functions

id s a —> a

id x = x

const ::a —>b ->a

const x _ = X

(.) t: (b =>c) > (a =>Db) > a —>c
f . g =\ x > f (g x)

flip :: (a->b ->c) >b->a->c
flip £ x y =fyx

($) t: (a->Db) -=>a ->b

f$ x = f x

—— functions on Bools

data Bool = False | True

(&&), (| :: Bool —> Bool —> Bool
True && X = X

False && _ = False

True _ = True

False X = x

not :: Bool -> Bool

not True = False

not False = True

—— functions on Maybe
data Maybe a = Nothing | Just a
isJust

isJust (Just a)
isJust Nothing

: Maybe a —> Bool
True
False

isNothing :: Maybe a —> Bool
isNothing = not . isJust
fromJust : Maybe a —> a

I e
.

fromJust (Just a) a

maybeToList :: Maybe a —> [a]
maybeToList Nothing = 1

maybeToList (Just a) = [a]

listToMaybe :: [a] —> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a
catMaybes : [Maybe a] —> [a]

catMaybes 1ls [x | Just x <- 1s]

—— functions on pairs

fst :: (a,b) —> a
fst (x,y) = x

snd :: (a,b) > b
snd (x,y) =y

swap : (a,b) —> (b,a)

swap (a,b) (b,a)

curry ::
curry f x y

uncurry :
uncurry f p

((a, b) -=>c) ->a ->b ->c¢c

£ (%, y)

: (a->b ->c) -> ((a, b) => ¢c)

f (fst p) (snd p)

—— functions on lists

map :: (a —-> b) —> [a] —> [b]
map £ xs = [£ x | x <- x5]

(++) :: [a] —> [a]
xs ++ ys = foldr (:) ys xs

-> [a]

filter :: (a —> Bool) —> [a] —> [a]
[x | x <-xs, px]

filter p xs =

concat :: [[a
concat xss =

concatMap :
concatMap f =

head, last
head (x:_)
last [x]

last (_:xs)

tail, init
tail (_:xs)
init [x]
init (x:xs)
null

null []
null (_:_)

length
length

iterate
iterate f x

repeat
repeat x

replicate
replicate n x

11

-> [a]

foldr (++) [] xss

(a => [b]) —> [a] —> [b]
concat . map £

I e

X
X

last xs

: [a] —> [a]
XS

[1]

X : init xs

: [a] —> Bool
True
False

: [a] —> Int
foldr (const (1+)) 0

: [a] => Int -> a
X
Xs !! (n-1)

(a->b ->b) —>b ->[a] > b

z
f x (foldr £ z xs)

(a > b —->a) ->a —-> [b] —> a

z
foldl £ (f z x) xs

: (a —> a) —> a —> [a]
X : iterate f (f x)

: a —-> [a]
xs where xs = xX:Xxs

: Int -> a => [a]
take n (repeat x)

cycle 2z
cycle [] =
cycle xs =
tails 22
tails xs =
take, drop

take n _ | n <=
take _ []

take n (x:xs)

drop n xs | n <=

drop _ []

drop n (_:xs)

splitAt
splitAt n xs

takewhile, dropWhile
takeWhile p []
takeWhile p (x:xs)
p X
otherw

dropwWhile p []

dropWhile p xs@(x:xs
p X
otherw

span :: (a —> Bool)
span p as = (takeWhi

lines, words sz

—— lines "apa\nbepal\
—— =="["apa", "bepa
—— words "apa bepal\
— == ["apa", "bepa

unlines, unwords ::
—— unlines ["apa","b

[a] => [a] .
error "Prelude.cycle: empty list"
xs’ where xs’' = xs ++ xs’
[aj —> [[a]]

Xs : case xs of
[1 -> [1
_: xs' —> tails xs’

: Int -> [a] —> [a]
[1
[1

= x : take (n-1l) xs

o
[

0 = xs
[1]
drop (n-1) xs

: Int -> [a] -> ([a],[a])
(take n xs, drop n xs)

[
.

:: (a —> Bool) —> [a] —> [a]

[1

]
b

takeWhile p xs
ise

I
—_
—

")

dropWhile p xs’
ise = xs

-> [a] —> ([a], [a])
le p as, dropWhile p as)

String -> [String]
ncepa\n"

", Mcepa”]

n cepa”

" "cepa"]

[String] -> String
epa”, "cepa"]

- == "apa\nbepa\ncepa"
—— unwords ["apa", "bepa", "cepa"]
- == "apa bepa cepa"

reverse
reverse

and, or
and
or

any, all

any p
all p

elem, notElem
elem x
notElem x

[
.

lookup :: (Eq a

lookup key [] =

lookup key ((x,y):xy
| key == =

[a] => [a]
foldl (flip (:)) []

[Bool] —> Bool
foldr (&&) True
foldr (||) False

(a —> Bool) -> [a] —> Bool
or . map p
and . map p

(Eq a) => a —-> [a] —> Bool
any (== X)
all (/= x)

) =>a —> [(a,b)] —> Maybe b
Nothing

s)

Just y

| otherwise lookup key xys

sum, product : (Num a) => [a] -> a

sum foldl (+) O

product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] —> a
maximum [] = error "Prelude.maximum: empty list"
maximum (x:xs) = foldl max x xs

minimum [] = error "Prelude.minimum: empty list"
minimum (x:xs) = foldl min x xs

zip :: [a] —=> [b] => [(a,b)]

zip = zipwith (,)

zipWith (a—>b—>c) —> [a]—->[b]->[c]

zipWith z (a:as) (b:bs)
= z a b : zipWith z as bs

[]
unzip : [(a,b)] —> ([a],[b])
unzip

foldr (\(a,b) ~(as,bs) =-> (a:as,b:bs)) ([1,I1)

zipWith

a:w uumnmuv~m~|vmm~
nub [] =[]
nub (x:xs) =

x:nub [y | y<-xs8, x /=y 1]

delete :: EQ a =>a —> [a] —> [a]
delete y [] =
delete y (x:xs) =

if x == then xs else x : delete y xs
(\\) :: Eq a => [a] —> [a] —> [a]
(\\) = foldl (flip delete)

:uhou unmmmuv~m~lv~m~lv~m~
union xs ys = xs ++ (ys \\ xs)

intersect :: EQ a => [a] —-> [a] —-> [a]
intersect xs ys = [x _ X <—- xs, X ‘elem’ ys]

intersperse :: a => [a] —> [a]
-— intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]
transpose :: [[a]] => [[a]]

—— transpose NNH\N\WN\\A\M\QNN
—— == [[1,4],[2,5],[3,6]]

partition :: (a —> Bool) —> [a] —> ([a],[a])
partition p xs =
(filter p xs, filter (not . p) xs)

mno:ﬁ "“mmmuv~m~|v-m-
group = groupBy (==)

groupBy :: (a —> a —> Bool) —> [a] —-> [[a]]

groupBy [1 [1

groupBy eq (xX:Xs) = (X:ys) : groupBy eq zs
where (ys,zs) = span (eq X) Xxs

isPrefixOf :: Eq a => [a] —> [a] —> Bool
isPrefixOf [_ = True
isPrefixOf [1 =

Il
2]
Q
e
2]
(0]

isPrefixOf (x:xs) (y:ys) = x ==y
&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
isSsuffixOf x y = reverse x
‘isPrefix0f’ reverse y

sort :: (Ord a) => [a] —> [a]
sort = foldr insert []
insert : (Ord a) => a —> [a] —> [a]

insert x []
insert x (y:xs) =
if x <= y then x:y:xs else y:insert x xs

[x]

—— functions on Char

type String = [Char]

toUpper, toLower :: Char —-> Char
—— toUpper ’‘a’ == ’'A’

—— toLower ’'Z’ == ‘'z’

digitToInt :: Char —> Int

—-— digitToInt '8’ == 8
intToDigit :: Int —-> Char
—— intToDigit 3 == '3’
ord Char -> Int

chr :: Int -> Char

—— Signatures of some useful functions
—— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—— the generator for values of a type
—— in class Arbitrary, used by quickCheck

choose :: Random a => (a, a) —> Gen a
—— Generates a random element in the given
—— inclusive range.

oneof :: [Gen a] —> Gen a
—— Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
—— weighted random distribution.

elements :: [a] —> Gen a
—— Generates one of the given values.

listOf :: Gen a —> Gen [a]
—— Generates a list of random length.

vectorOf :: Int -> Gen a —-> Gen [a]
—— Generates a list of the given length.

sized :: (Int -> Gen a) —> Gen a
—— construct generators that depend on
—— the size parameter.

