
Chalmers | Göteborgs Universitet 2015-01-15

Examiner: David Sands dave@chalmers.se, D&IT

Functional Programming TDA 452, DIT 142

2015-01-15 14.00 – 18.00 “Väg och vatten” (VV)

Course assistants Simon Huber and Anders Mörtberg will be available to answer questions
on the day of the examination: 031 772 5410 or 0730423376 (Anders)

• There are 4 Questions with maximum 10 + 8 + 10 + 14 = 42 points; a total of 21 points
definitely guarantees a pass.

• Results: latest within 21 days.

• A course assistant (Anders and/or Simon) will visit the examination rooms at approx-
imately 15–15.30, and again at approximately 16.30.

• Permitted materials:

– Dictionary

• Please read the following guidelines carefully:

– Read through all Questions before you start working on the answers.

– Begin each Question on a new sheet.

– Write clearly; unreadable = wrong!

– Full points are given to solutions which are short, elegant, and correct. Fewer points
may be given to solutions which are unnecessarily complicated or unstructured.

– For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

– You can use any of the standard Haskell functions listed at the back of this exam
document.

– You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1

Question 1. (10 points) These questions refer to standard library functions (listed at the back)

(i) Give a definition of the function filter using recursion.

(ii) The function last function can be defined as follows:

last (x:xs) = foldl g x xs

for some suitable function g. Define g.

(iii) Give a definition of lookup using filter, map, and listToMaybe. You may define
small helper functions, but the helper functions should not use recursion or list
comprehensions.

(iv) Give a recursive definition of the function sequence_ without using do-notation.

(v) Define unzip using recursion.

Solution

filter’ p [] = []

filter’ p (x:xs) | p x = x : filter’ p xs

| otherwise = filter’ p xs

g _ x = x -- flip const

lookup’ x = listToMaybe . map snd . filter xfirst

where xfirst (a,_) = a == x

sequence_’ [] = return ()

sequence_’ (i:is) = i >> sequence_’ is

unzip’ [] = ([],[])

unzip’ ((a,b):xs) = let (as,bs) = unzip’ xs in (a:as,b:bs)

Question 2. (8 points) Give the most general types of the following four functions:

fa m n = Just (m > n)

fb x y z = z y + z x

fc (x:xs) (y:ys) = x == ys

fc [] ys = null ys

fd x = do

z <- x

return $ replicate z z

Solution

fa :: Ord a => a -> a -> Maybe Bool

fb :: Num a => t -> t -> (t -> a) -> a

fc :: Eq t => [[t]] -> [t] -> Bool

fd :: Monad m => m Int -> m [Int]

2

Question 3. (10 points) The function permu is intended to produce the list of all permutations of its
argument. For example,

Main> permu [1,2,3]

[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]

The exact order of lists in the output is not important, and if there are repeated ele-
ments in the input then there may be repeated lists in the output. The following is an
incomplete recursive definition of permu:

permu :: [a] -> [[a]]

permu [] = [[]]

permu (x:xs) = concatMap (insertAll x) $ permu xs

(i) (2 points) Give the type of the missing function insertAll

(ii) (4 points) Provide the missing definition of insertAll Solution

-- recursive

insertAll :: a -> [a] -> [[a]]

insertAll x [] = [[x]]

insertAll x (y:ys) = (x:y:ys) : map (y:) (insertAll x ys)

-- or using list comprehensions:

insertAll’ x ys =

[take n ys ++ [x] ++ drop n ys | n <- [0..length ys]]

(iii) (4 points) Define a quickCheck property which tests that every element of the
result of function permu is indeed a permutation of its argument. Your solution
should not use sorting (e.g. via the function sort). Include any type declarations
you deem necessary.

Solution

prop_permu xs = all (‘isPermutationOf‘ xs) $ permu xs

where types = xs :: [Bool] -- otherwise Haskel chooses [()]

isPermutationOf [] ys = null ys

isPermutationOf (x:xs) ys = x ‘elem‘ ys && xs ‘isPermutationOf‘ (delete x ys)

3

Question 4. (14 points) The following data type represents binary trees with elements of any type
a at the nodes:

data T a = Leaf | Node a (T a) (T a)

deriving Show

(i) (2 points) Write the expression which would be used to represent the tree pictured
below. You are required to use code layout which make your solution easy to read!

2	

1	 1	

1	 0	

Solution
ex = Node 2 t1 (Node 1 t1 t0)

where t1 = Node 1 Leaf Leaf

t0 = Node 0 Leaf Leaf

(ii) (4 points) Define the function

parents :: Eq a => a -> T a -> [a]

which computes the elements which are immediate parents of the given node el-
ement in the given tree. For example, in the tree pictured above, the parents of
1 are [2,1] and the parents of 0 are [1], the parents of 2 is [], and the parents
of 3 is []. The exact order in which the parents appear is not important. It is
possible for a parent to appear in the result list more than once, but only because
that parent occurs in more than one place in the tree. Solution

parents n Leaf = []

parents n (Node m t1 t2) = if n ‘isRootOf‘ t1 || n ‘isRootOf‘ t2 then [m] else []

++ parents n t1 ++ parents n t2

n ‘isRootOf‘ Node m _ _ = n == m

n ‘isRootOf‘ Leaf = False

(iii) (4 points) Define a quickCheck property for parents which specifies that each
element of the result of parents n t should be found in t, and that the number
of parents of an element is less than or equal to the number of times the element
appears in the tree.

Solution

prop_parants n t = all (‘elem‘ ts) ps && length ps <= length (filter (==n) ts)

where ps = parents n t

ts = toList t

toList Leaf = []

toList (Node n t1 t2) = n : (toList t1 ++ toList t2)

types = t :: T Integer

4

(iv) (4 points) We say that a tree has depth n if the longest path from the root of the
tree to a leaf passes through n nodes. The depth of the tree in the above example
is 3. Define a function

genT :: Int -> [a] -> Gen (T a)

such that genT n es is a QuickCheck generator for random trees of depth n, with
elements in the list of elements es. You may assume that n is greater than or
equal to 0. The tree pictured in the example above should be a possible sample of
genT 3 [0,1,2]. As in the example, the trees you generate should have branches
of various depths, but at least one branch should have the required depth.

Hint: It is probably not useful to use the quickCheck function sized. Solution

genT n els | n <= 0 = return Leaf

| otherwise = do

e <- elements els

m <- choose (0,n-1)

big <- genT (n-1) els

small <- genT m els

flip <- arbitrary

return $ if flip then Node e big small

else Node e small big

5

{−
This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad
−} −−−
−− standard type classes

class Show a where
 show :: a −> String

class Eq a where
 (==), (/=) :: a −> a −> Bool

class (Eq a) => Ord a where
 (<), (<=), (>=), (>) :: a −> a −> Bool
 max, min :: a −> a −> a

class (Eq a, Show a) => Num a where
 (+), (−), (*) :: a −> a −> a
 negate :: a −> a
 abs, signum :: a −> a
 fromInteger :: Integer −> a

class (Num a, Ord a) => Real a where
 toRational :: a −> Rational

class (Real a, Enum a) => Integral a where
 quot, rem :: a −> a −> a
 div, mod :: a −> a −> a
 toInteger :: a −> Integer

class (Num a) => Fractional a where
 (/) :: a −> a −> a
 fromRational :: Rational −> a

class (Fractional a) => Floating a where
 exp, log, sqrt :: a −> a
 sin, cos, tan :: a −> a

class (Real a, Fractional a) => RealFrac a where
 truncate, round :: (Integral b) => a −> b
 ceiling, floor :: (Integral b) => a −> b

−−
−− numerical functions

even, odd :: (Integral a) => a −> Bool
even n = n ‘rem‘ 2 == 0
odd = not . even

−−
−− monadic functions
sequence :: Monad m => [m a] −> m [a]
sequence = foldr mcons (return [])
 where mcons p q = do x <− p
 xs <− q
 return (x:xs)

sequence_ :: Monad m => [m a] −> m ()
sequence_ xs = do sequence xs
 return ()

liftM :: (Monad m) => (a1 −> r) −> m a1 −> m r
liftM f m1 = do x1 <− m1
 return (f x1)
−−

−− functions on functions
id :: a −> a
id x = x

const :: a −> b −> a
const x _ = x

(.) :: (b −> c) −> (a −> b) −> a −> c
f . g = \ x −> f (g x)

flip :: (a −> b −> c) −> b −> a −> c
flip f x y = f y x

($) :: (a −> b) −> a −> b
f $ x = f x
−−
−− functions on Bools

data Bool = False | True

(&&), (||) :: Bool −> Bool −> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x

not :: Bool −> Bool
not True = False
not False = True
−−
−− functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a −> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a −> Bool
isNothing = not . isJust

fromJust :: Maybe a −> a
fromJust (Just a) = a

maybeToList :: Maybe a −> [a]
maybeToList Nothing = []
maybeToList (Just a) = [a]

listToMaybe :: [a] −> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

catMaybes :: [Maybe a] −> [a]
catMaybes ls = [x | Just x <− ls]

−−
−− functions on pairs

fst :: (a,b) −> a
fst (x,y) = x

snd :: (a,b) −> b
snd (x,y) = y

swap :: (a,b) −> (b,a)
swap (a,b) = (b,a)

curry :: ((a, b) −> c) −> a −> b −> c
curry f x y = f (x, y)

uncurry :: (a −> b −> c) −> ((a, b) −> c)
uncurry f p = f (fst p) (snd p)

−−
−− functions on lists

map :: (a −> b) −> [a] −> [b]
map f xs = [f x | x <− xs]

(++) :: [a] −> [a] −> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a −> Bool) −> [a] −> [a]
filter p xs = [x | x <− xs, p x]

concat :: [[a]] −> [a]
concat xss = foldr (++) [] xss

concatMap :: (a −> [b]) −> [a] −> [b]
concatMap f = concat . map f

head, last :: [a] −> a
head (x:_) = x

last [x] = x
last (_:xs) = last xs

tail, init :: [a] −> [a]
tail (_:xs) = xs

init [x] = []
init (x:xs) = x : init xs

null :: [a] −> Bool
null [] = True
null (_:_) = False

length :: [a] −> Int
length = foldr (const (1+)) 0

(!!) :: [a] −> Int −> a
(x:_) !! 0 = x
(_:xs) !! n = xs !! (n−1)

foldr :: (a −> b −> b) −> b −> [a] −> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a −> b −> a) −> a −> [b] −> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

iterate :: (a −> a) −> a −> [a]
iterate f x = x : iterate f (f x)

repeat :: a −> [a]
repeat x = xs where xs = x:xs

replicate :: Int −> a −> [a]
replicate n x = take n (repeat x)

cycle :: [a] −> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs’ where xs’ = xs ++ xs’

tails :: [a] −> [[a]]
tails xs = xs : case xs of
 [] −> []
 _ : xs’ −> tails xs’

take, drop :: Int −> [a] −> [a]
take n _ | n <= 0 = []
take _ [] = []
take n (x:xs) = x : take (n−1) xs

drop n xs | n <= 0 = xs
drop _ [] = []
drop n (_:xs) = drop (n−1) xs

splitAt :: Int −> [a] −> ([a],[a])
splitAt n xs = (take n xs, drop n xs)

takeWhile, dropWhile :: (a −> Bool) −> [a] −> [a]
takeWhile p [] = []
takeWhile p (x:xs)
 | p x = x : takeWhile p xs
 | otherwise = []

dropWhile p [] = []
dropWhile p xs@(x:xs’)
 | p x = dropWhile p xs’
 | otherwise = xs

span :: (a −> Bool) −> [a] −> ([a], [a])
span p as = (takeWhile p as, dropWhile p as)

lines, words :: String −> [String]
−− lines "apa\nbepa\ncepa\n"
−− == ["apa","bepa","cepa"]
−− words "apa bepa\n cepa"
−− == ["apa","bepa","cepa"]

unlines, unwords :: [String] −> String
−− unlines ["apa","bepa","cepa"]
−− == "apa\nbepa\ncepa"
−− unwords ["apa","bepa","cepa"]
−− == "apa bepa cepa"

reverse :: [a] −> [a]
reverse = foldl (flip (:)) []

and, or :: [Bool] −> Bool
and = foldr (&&) True
or = foldr (||) False

any, all :: (a −> Bool) −> [a] −> Bool
any p = or . map p
all p = and . map p

elem, notElem :: (Eq a) => a −> [a] −> Bool
elem x = any (== x)
notElem x = all (/= x)

lookup :: (Eq a) => a −> [(a,b)] −> Maybe b
lookup key [] = Nothing
lookup key ((x,y):xys)
 | key == x = Just y

 | otherwise = lookup key xys

sum, product :: (Num a) => [a] −> a
sum = foldl (+) 0
product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] −> a
maximum [] = error "Prelude.maximum: empty list"
maximum (x:xs) = foldl max x xs

minimum [] = error "Prelude.minimum: empty list"
minimum (x:xs) = foldl min x xs

zip :: [a] −> [b] −> [(a,b)]
zip = zipWith (,)

zipWith :: (a−>b−>c) −> [a]−>[b]−>[c]
zipWith z (a:as) (b:bs)
 = z a b : zipWith z as bs
zipWith _ _ _ = []

unzip :: [(a,b)] −> ([a],[b])
unzip =
 foldr (\(a,b) ~(as,bs) −> (a:as,b:bs)) ([],[])

nub :: Eq a => [a] −> [a]
nub [] = []
nub (x:xs) =
 x : nub [y | y <− xs, x /= y]

delete :: Eq a => a −> [a] −> [a]
delete y [] = []
delete y (x:xs) =
 if x == y then xs else x : delete y xs

(\\) :: Eq a => [a] −> [a] −> [a]
(\\) = foldl (flip delete)

union :: Eq a => [a] −> [a] −> [a]
union xs ys = xs ++ (ys \\ xs)

intersect :: Eq a => [a] −> [a] −> [a]
intersect xs ys = [x | x <− xs, x ‘elem‘ ys]

intersperse :: a −> [a] −> [a]
−− intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

transpose :: [[a]] −> [[a]]
−− transpose [[1,2,3],[4,5,6]]
−− == [[1,4],[2,5],[3,6]]

partition :: (a −> Bool) −> [a] −> ([a],[a])
partition p xs =
 (filter p xs, filter (not . p) xs)

group :: Eq a => [a] −> [[a]]
group = groupBy (==)

groupBy :: (a −> a −> Bool) −> [a] −> [[a]]
groupBy _ [] = []
groupBy eq (x:xs) = (x:ys) : groupBy eq zs
 where (ys,zs) = span (eq x) xs

isPrefixOf :: Eq a => [a] −> [a] −> Bool
isPrefixOf [] _ = True
isPrefixOf _ [] = False

isPrefixOf (x:xs) (y:ys) = x == y
 && isPrefixOf xs ys
isSuffixOf :: Eq a => [a] −> [a] −> Bool
isSuffixOf x y = reverse x
 ‘isPrefixOf‘ reverse y

sort :: (Ord a) => [a] −> [a]
sort = foldr insert []

insert :: (Ord a) => a −> [a] −> [a]
insert x [] = [x]
insert x (y:xs) =
 if x <= y then x:y:xs else y:insert x xs

−−
−− functions on Char

type String = [Char]

toUpper, toLower :: Char −> Char
−− toUpper ’a’ == ’A’
−− toLower ’Z’ == ’z’

digitToInt :: Char −> Int
−− digitToInt ’8’ == 8

intToDigit :: Int −> Char
−− intToDigit 3 == ’3’

ord :: Char −> Int
chr :: Int −> Char

−−
−− Signatures of some useful functions
−− from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
−− the generator for values of a type
−− in class Arbitrary, used by quickCheck

choose :: Random a => (a, a) −> Gen a
−− Generates a random element in the given
−− inclusive range.

oneof :: [Gen a] −> Gen a
−− Randomly uses one of the given generators

frequency :: [(Int, Gen a)] −> Gen a
−− Chooses from list of generators with
−− weighted random distribution.

elements :: [a] −> Gen a
−− Generates one of the given values.

listOf :: Gen a −> Gen [a]
−− Generates a list of random length.

vectorOf :: Int −> Gen a −> Gen [a]
−− Generates a list of the given length.

sized :: (Int −> Gen a) −> Gen a
−− construct generators that depend on
−− the size parameter.

