Chalmers | GOTEBORGS UNIVERSITET 2013-12-17

David Sands, D&IT

Functional Programming TDA 452/451, DIT 142/141

2013-12-17 08.30 — 12.30 M/maskin

David Sands, 0737 207663

e There are 4 Questions with maximum 8 + 9 + 15 + 16 = 48 points; a total of 22 points
definitely guarantees a pass.

e Results: latest within 21 days.

e The examiner will visit the examination rooms at approximately 09.30 - 09.45 and one
more time during mid morning.

e Permitted materials:

Dictionary

e Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

Full points are given to solutions which are short, elegant, and correct. Fewer points
may be given to solutions which are unnecessarily complicated or unstructured.

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

There are only two difficulties with Haskell programming:
predicting space behaviour, monads, and off-by-one errors.

Question 1. In this question we assume that there exits a function rainfall :: Int -> Float
which gives the weekly rainfall (in mm) in Gothenburg starting from a particular year,
where weeks are numbered in sequence 1, 2,...

(a) (5 points) Define two versions of the function maxRainfall :: Int -> Float
where maxRainfall n gives the maximum rainfall in any week in the range [1. .n].
Your definition may assume that n > 0:

(i) Give a definition using foldr, simple enumeration lists (e.g., [1..n]), the
function max, and no other recursive functions, list comprehensions, or prelude
functions.

(ii) Give a definition using a tail-recursive helper-function, addition, and the func-
tion max, but without using any other recursive functions, list comprehensions,
enumerations (like [1..n]) or prelude functions.

(b) (3 points) The function maxWeeks :: Int -> [Int] is supposed to behave as
follows: given a week number n (assumed to be greater than zero) it returns the
list of all week numbers in the range 1,...,n which had the maximal rainfall for that
period. So for example if the largest rainfall in the first 9 weeks was 29.4, then
maxWeeks 9 should return all the week numbers in the range 1 to 9 which had
rainfall of 29.4.

Define maxWeeks using only list comprehensions, the list [1..n], the prelude func-
tion maximum, ==, and no other recursive functions or prelude functions. You may
not use the functions defined in part (a).

Solution

maxRainfall n = foldr maxrain O [1..n]
where maxrain w r = rainfall w ‘max‘ r

maxRainfall’ n = maxr O n
where
maxr maxSoFar w
| w<=0 maxSoFar
| otherwise = maxr (maxSoFar ‘max‘ rainfall w) (w-1)

maxWeeks n = [i | i <~ [1..n], rainfall i == maximum [rainfall j | j <- [1..n]]]

Question 2. (a) (5 points) Give the most general types of the following five functions:

faxyz=xz&&yz

fb m = Just (m+1)

fc (x:y:xs) | x >y = 999
fc =0

fd (x:xs) (y:ys) = x == ys

fd [1 ys =ys == []
fe x y = do
zZ <- X

return $ z:y

Solution

fa :: (t -> Bool) -> (¢t -> Bool) -> t —> Bool
fb :: Num a => a -> Maybe a

fc :: (Num a, Ord b) => [b] > a

fd :: Eq t => [[t]] -> [t] -> Bool

fe :: Monad m => m a -> [a] —> m [a]

(b) (2 points) Rewrite the following definition without do notation:

ff x y = do
c <- readFile x
d <- readFile c
putStr (c ++ "\n" ++ d)

Solution

ff’ x y = readFile x >>= \c ->
readFile ¢ >>= \d ->
putStr (c ++ "\n" ++ d)

(¢) (2 points) Rewrite the following using do notation:

fg a tb tc td
= case lookup a tb of
Nothing -> Nothing
Just b -> case lookup b tc of
Nothing -> Nothing
Just ¢ >
case lookup ¢ td of
Nothing -> Nothing
Just d -> Just [b,c,d]

Solution

fg’ a tb tc td = do
b <- lookup a tb
¢ <- lookup b tc
d <- lookup c td
Just [b,c,d]

Question 3. A bag, or multiset, is a collection of elements like a set, but where an element can occur
more than once. The following data type will be used to represent a bag:

data Bag a = EmptyBag | Node a Int (Bag a) (Bag a)

The idea is that any Bag containing a node of the form Node elem count left right
represents a bag containing count copies of the element elem. The following data type
invariants should be maintained (and thus may be assumed) for any such node in any
Bag built in your implementation:

e all the elements in left are strictly smaller than elem,
e all the elements in right are strictly larger than elem, and

e the count count is greater than or equal to zero.
These invariants mean that a bag is a variant of a so-called binary search tree.

(a) (1 points) In what situation would it be useful to have the following definition:
emptyBag :: Bag a
emptyBag = EmptyBag
Solution

-- when you want to hide the implementation of the datatype
-- (by not exporting the constructors).

(b) (2 points) Define the following function, by recursion on the Bag argument, to
count how many times a given element appears in a bag:
bcount :: Ord a => a -> Bag a -> Int

(c) (3 points) Define a function which converts a bag to a list, with the correct number
of copies of each element. Your function should produce a sorted list whenever the

bag satisfies the data type invariant (note: you should not use the sort function to
ensure this).

bagToList :: Bag a -> [al
(d) (4 points) Define the data type invariant
prop_Bag :: Ord a => Bag a -> Bool
which checks whether the given bag satisfies the data type invariant.
(e) (5 points) Define
bchange :: Ord a => a -> Int -> Bag a -> Maybe (Bag a)
which changes the number of occurrences of a given element by the given amount.

If there are not sufficiently many elements in the bag to complete the operation
then the function returns Nothing.

For example, if bagToList b is [9,9,10] then the following is True:

map (fmap bagToList) [bchange 11 1 b, bchange 9 (-2) b, bchange 9 (-4) bl
== [Just [9,9,10,11], Just [10], Nothing]

Solution

bcount x EmptyBag = 0
bcount x (Node e c left right)

| x == e =c
| x < e = bcount x left
| x> e = bcount x right

bagToList EmptyBag = []
bagToList (Node e ¢ 1 r) = bagTolList 1 ++ replicate ¢ e ++ bagTolist r

prop_Bag EmptyBag = True
prop_Bag (Node a c left right) = all (<a) (bagTolList left)
&% all (>a) (bagToList right)
&& all prop_Bag [left,right] && c >= 0
-- Note single-traversal 0(n) solution is more tricky;
-- you cannot just recursively compare each element
-- with the highest elements on the left and right!

Just $ bc b
Nothing

bchange x n b | newcount >= 0
| otherwise

where
newcount = bcount x b + n
bc EmptyBag = Node x n EmptyBag EmptyBag
bc (Node e c left right)
| e == x = Node e newcount left right
| x < e Node e ¢ (bc left) right
| x> e Node e ¢ left (bc right)

Question 4. [This question has four parts, (a)-(d) on two printed pages] The Towers of Hanoi is
an ancient puzzle, consisting of a collection of rings of different sizes, and three posts
mounted on a base. At the beginning all the rings are on the left-most post as shown,
and the goal is to move them all to the rightmost post, by moving one ring at a time
from one post to another. But, at no time may a larger ring be placed on top of a
smaller one!

Hanoi 3 4 [[1,2,3,4],[1,[1]

[12,3,41,011,01]

e

Hanoi 3 4 [[3,41, [11, [2]]

Seo

S

Hanoi 3

In this question we will model games with any Hanoi 3 4 [[3,41, [1, [1,2]1]

number of discs (the game in the picure above

e =

has 8) and any number of pegs (the game in the

picture has 3), using the following data type: Hanoi 3 4 [[4], (3], [1,2]]
oSS

type Pegs = Int

type NumDiscs = Int Hanoi 3 4 [[1,4],[3], [2]]

type Disc = Int Q/e &

data Hanoi = Hanoi Pegs NumDiscs [[Disc]]

deriving (Eq,Show)

The image to the right above shows a sequence of moves for a game with 4 discs and
three “pegs” and the corresponding Haskell representations of each board.

(a)

(3 points) Define a function prop_wellFormedHanoi :: Hanoi -> Bool such that
prop_wellFormedHanoi (Hanoi p d ps) checks that the Hanoi board is well-
formed: it contains exactly the discs [1..d], p pegs, and on any peg there is
never a larger disc on top of a smaller one. Solution

prop_wellFormedHanoi (Hanoi p d ps) = sort (concat ps) == [1..d]
&% length ps == p
&& all (\a -> a == sort a) ps

(1 points) Define a function

emptyHanoi :: Pegs -> NumDiscs -> Hanoi

which given a number of discs and number of pegs, creates an empty Hanoi of
those dimensions. Note that this Hanoi will intentionally not be well-formed if the
number of discs is nonzero. Solution

emptyHanoi np nd = Hanoi np nd $ replicate np []

(6 points) Define two functions

addDisc :: Disc -> Pegs -> Hanoi -> Hanoi

removeDisc :: Pegs -> Hanoi -> Maybe (Disc, Hanoi)

addDisc given a disc, a peg number, and a Hanoi, creates a Hanoi by adding the
disc to the peg of the Hanoi. If the peg is outside the range of the Hanoi then
your definition should leave the Hanoi unchanged. removeDisc p h attempts to

return the pair of the top disc from peg p of h, together with the resulting Hanoi.
It returns Nothing if this is not possible.

Neither of these functions should change the NumDiscs dimension of the Hanoi (so
in practice one would expect that only the Hanoi result of addDisc, or the Hanoi
argument to removeDisc, to be well-formed — but you do not need to check this).

Solution

addDisc p d (Hanoi p’ d’ ds) = Hanoi p’ d’ $ modify (d:) p ds

removeDisc p (Hanoi p’ 4’ ds)
| p <=p’ & p > 0 && not (null peg)

Just $ (head peg, h)

| otherwise = Nothing
where peg = ds !! (p - 1)
h = Hanoi p’ d’ $ modify tail p ds
modify f p =

zipWith (\n ds -> if p == n then £ ds else ds) [1..]

(6 points) Give the definitions necessary to enable quickCheck to run on properties
of well-formed Hanois. You may assume that Hanoi boards have between 2 and 10
discs and between 3 and 5 pegs.

Hint: one strategy for generating a well-formed Hanoi is to first pick a random
number of discs d and a random number of pegs p; then starting with a row of p
empty pegs, recursively add the elements from the list of discs [1..d], one at a
time, to randomly chosen pegs in the range [1..p]. Finally fix each peg so that
the discs are stacked in the right order.

Solution

instance Arbitrary Hanoi where
arbitrary = do
pegs <- elements [3..5]
discs <- elements [2..10]
dist <- distribute pegs [1..discs] $ replicate pegs []
return $ Hanoi pegs discs $ map sort dist

distribute _ [] bs = return bs
distribute ps (v:vs) bs = do
p <- choose(1,ps)
distribute ps vs (modify (v:) p bs)

{_

This is a list of selected functions from the
standard Haskell modules: Prelude Data.List
Data.Maybe Data.Char Control.Monad

—- standard type classes

class Show a where
show :: a —> String

class Eq a where
(==), (/=) :: a => a => Bool

class (Eq a) => Ord a where
(<) (=), (>=), (>) a => a -> Bool
max, min a->a->a

class (Eq a, Show a) => Num a where

(H)r (5)r (%) ->a->a
negate -> a
abs, signum -> a
fromInteger nteger -> a

class (Num a, Ord a) => Real a where
toRational :: a —> Rational

class (Real a, Enum a) => Integral a where
quot, rem a->a->a
div, mod a->a->a
toInteger a => Integer

class (Num a) => Fractional a where
/ :ra->a->a
fromRational :: Rational -> a
class (Fractional a) => Floating a where
exp, log, sqrt t: a —> a
sin, cos, tan t: a —> a

class (Real a, Fractional a) => RealFrac a where
truncate, round :: (Integral b) => a -> b
ceiling, floor :: (Integral b) => a -> b

—— numerical functions

even, odd
even n
odd

: (Integral a) => a —> Bool
n ‘rem’ 2 == 0
not . even

—— monadic functions

sequence :: Monad m => [m a] —> m [a]
sequence = foldr mcons (return [])
where mcons p g = do x <- p
xs <- g
return (xX:xs)

sequence_ 22

Monad m => [m a] =>m ()
sequence_ Xs o

sequence xs
return ()

d

liftM B
1iftM £ ml

(Monad m) => (al -> r) ->mal ->mr
= do x1 <- ml
return (f x1)

—- functions on functions

id :: a->a
id x = X
const :a->b->a

const X _ =X

() :: (b ->c) > (a->b) >a-—>c
f.gq =\ x —> f (g x)

flip :: (a->b->¢c) >b ->a->c
flip £ x y =fyx

($) :: (a—>Db) >a->b

f$ x =f x

—— functions on Bools

data Bool = False | True

(&&), (|]) :: Bool -> Bool -> Bool
True && X X

False && _ = False

True _ = True

False X =x

not :: Bool —> Bool

not True False

not False = True

—— functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a —> Bool
isJust (Just a) = True
isJust Nothing = False

isNothing :: Maybe a —> Bool
isNothing = not . isJust
fromJust

: Maybe a -> a
fromJust (Just a) a

maybeToList
maybeToList Nothing
maybeToList (Just a)

: Maybe a -> [a]
[1
[al]

listToMaybe :: [a] —> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

: [Maybe a] -> [a]

catMaybes
[x | Just x <- 1s]

catMaybes 1ls

—— functions on pairs

fst :: (a,b) —> a
fst (x,y) = X

snd :: (a,b) > b
snd (X,y) =y

swap :: (a,b) —> (b,a)
swap (a,b) = (b,a)

curry :: (
curry f x y

uncurry ::
uncurry f p

(a, b) -=>¢c) -=>a ->b —>c

£ (%, y)

(a =>b ->c¢c) -> ((a, b) -> ¢)
f (fst p)

(snd p)

—— functions on lists

map ::

(a => b) —> [a] —> [b]

map £ xs = [£ x | x <= xs]

(++)

¢ [a] —> [a]
xs ++ ys = foldr

(

—> [a]
) YS Xs

filter :: (a —> Bool) —> [a] —> [a]
filter p xs = [x X <- xXs, p X]
concat :: [[a]] —> [a]

concat xss = foldr (++)

concatMap ::
concatMap f =

head, last
head (x:_)
last [x]
last (_:xs)

tail, init
tail (_:xs)

init [x]
init (x:xs)

null
null []
null (_:_)

length
length

foldl 22
foldl f z [
foldl f z (

iterate
iterate f x

repeat
repeat x

replicate
replicate n x

[1 xss

(a => [b]) —> [a] —> [b]
concat . map f

[a] —> a
X
X
last xs

[aj —> [a]
xS

X : init xs
[a] —> Bool

True

False

[a] —> Int
foldr (const (1+)) 0

[a] => Int -> a
x

xs !! (n-1)

(a->b->b) =>b ->[a] > b

4
f x (foldr £ z xs)

(a->b ->a) ->a ->[b] ->a

z
foldl £ (f z x) xs

(a —> a) —> a —> [a]
x : iterate f (f x)

a —> [a]
xs where xs = x:xs

Int -> a -> [a]
take n (repeat x)

cycle :: [a] —> [a]
cycle [] = error "Prelude.cycle: empty list"
cycle xs = xs’ where xs’' = xs ++ xs'
tails :: [a] => [[a]]
tails xs = Xs : case Xs of

[1 -> [1

_ : Xs' =-> tails xs’
take, drop :: Int -> [a] —> [a]
take n _ | n<=0 [1
take _ [1]
take n (x:xs) = x : take (n-1) xs
drop n xs | n<=0= =xs
drop _ [] = 11
drop n (_:Xs) = drop (n-1) xs
splitAt : Int -> [a] -> ([a],[a])

splitAt n xs

(take n xs, drop n xs)

takewhile, dropWhile :: (a —> Bool) —> [a] —> [a]
takeWhile p [] =

takeWw

dropw.
dropw.

span

hile p (x:xs)
p X
otherwise

x : takeWhile p xs
[1

[1

hile p []

hile p xs@(x:xs"')
p X = dropWhile p xs’
otherwise = xs

:: (a => Bool) —> [a] —> ([a], [a])

span p as = (takeWhile p as, dropWhile p as)

lines
- 1i

—— WO.

unlin
—— un

—— un

, words :: String —-> [String]
nes "apa\nbepa\ncepa\n"

== ["apa", "bepa", "cepa"]

rds "apa bepa\n cepa"

== ["apa", "bepa", "cepa"]

es, unwords :: [String] —> String
lines ["apa", "bepa", "cepa"]

== "apa\nbepa\ncepa"
words ["apa", "bepa", "cepa"]

== "apa bepa cepa"

reverse :: [a] => [a]

reverse = foldl (flip (:)) [1

and, or :: [Bool] —> Bool

and = foldr (&&) True

or = foldr (||) False

any, all (a —> Bool) -> [a] —> Bool
any p or . map p

all p = and . map p

elem, notElem (Eq a) => a —> [a] —> Bool
elem x any (== X)

notElem x = all (/= x)

lookup :: (Eq a) => a -> [(a,b)] —> Maybe b
lookup key [] = Nothing

looku

p key ((x,y):xys)
key == x = Just y

| otherwise = lookup key xys

sum, product : (Num a) => [a] —> a

sum = foldl (+) O

product = foldl (*) 1

maximum, minimum :: (Ord a) => [a] —> a
maximum [] = error "Prelude.maximum: empty list"
maximum (x:xs) = foldl max x Xs

minimum [] = error "Prelude.minimum:empty list"
minimum (x:xs) = foldl min x xs

zip :: [a] => [b] —> [(a,b)]

zip = zipWith (,)

zipWith (a—>b—>c) —> [a]—->[b]—>[c]

zipWith z (a:as) (b:bs)
= =z ab : zipWith z as bs

zipWith _ [
unzip :: [(a,b)] —> ([a],[Db])
unzip =
foldr (\(a,b) ~(as,bs) => (a:as,b:bs)) ([1,[
nub :: Eq a => [a] —-> [a]
nub [] = [1

nub (x:xs) =
x :nub [y | y <-xs, x /=y]

delete :: EQ a => a —-> [a] —-> [a]
delete y [1] =11
delete y (x:xs) =

if x == y then xs else x : delete y xs
(\\) :: Eq a => [a] —> [a] —> [a]
(\\) = foldl (flip delete)

union :: EQ a => [a] —> [a] —> [a]
union xs ys = xs ++ (ys \\ xs)

intersect :: EQ a => [a] —> [a] —> [a]
intersect xs ys = [x | x <- x5, x ‘elem’ ys
intersperse :: a —> [a] —> [a]
—-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]
transpose :: [[a]] —=> [[a]]

—— transpose [[1,2,3],[4,5,6]]
- ==1[[1,4],[2,5],[3,6]]

partition :: (a => Bool) —-> [a] —> ([a],[a])
partition p xs =

(filter p xs, filter (not . p) xs)
group :: Eq a => [a] —> [[a]]
group = groupBy (

groupBy :: (a —> a —> Bool) —-> [a] —> [[a]]
groupBy _ [] = 11
groupBy eq (X:xXs) = (X:ys) : groupBy eq zs

where (ys,zs) = span (eq X) Xs

isPrefixOf :: Eq a => [a] —-> [a] —> Bool
isPrefix0Of []
isPrefixof _ [1

1)

isPrefixOf (x:xs) (y:ys) = X ==y
&& isPrefixOf xs ys
isSuffixOf :: Eq a => [a] —> [a] —> Bool
issuffixOf x y = reverse x
‘isPrefix0f’' reverse y

sort :: (ord a) => [a] —-> [a]

sort = foldr insert []

insert :: (Ord a) => a —> [a] —> [a]
insert x [] [x]

insert x (y:xs) =
if x <= y then x:y:xs else y:insert x xs

—— functions on Char

type String = [Char]

toUpper, toLower :: Char —> Char
—-— toUpper ’‘a’ == ’A’

-- toLower ’'Z’ == ‘'z’

digitToInt :: Char -> Int
-— digitToInt '8’ 8

intToDigit

:: Int -> Char
—-— intToDigit 3

== 137

ord :: Char -> Int
chr :: Int -> Char

—— Signatures of some useful functions
—-— from Test.QuickCheck

arbitrary :: Arbitrary a => Gen a
—— the generator for values of a type
—-— in class Arbitrary, used by quickCheck

choose :: Random a => (a, a) —> Gen a
—— Generates a random element in the given
—-— inclusive range.

oneof :: [Gen a] —-> Gen a
—— Randomly uses one of the given generators

frequency :: [(Int, Gen a)] —> Gen a
—— Chooses from list of generators with
-- weighted random distribution.

elements :: [a] —> Gen a
—— Generates one of the given values.

listOf :: Gen a -> Gen [a]
—-— Generates a list of random length.

vectorOf :: Int -> Gen a —> Gen [a]
—— Generates a list of the given length.

sized :: (Int -> Gen a) —-> Gen a
—— construct generators that depend on
—— the size parameter.

