Chalmers | GOTEBORGS UNIVERSITET 2019-01-19

Examiner: Thomas Hallgren, D&IT,
Answering questions at approx 10.00 (or by phone)

Functional Programming TDA 452, DIT 143

2019-01-19 8:30 — 12:30 Lindholmen-salar

There are 5 questions with maximum 8 + 8 4+ 12 + 8 + 4 = 40 points. Grading:
Chalmers: 3 = 20-26 points, 4 = 27-33 points , 5 = 34—40 points

GU:

G = 20-33 points, VG = 34-40 points

Results: latest approximately 10 days.

Permitted materials:

Dictionary

Please read the following guidelines carefully:

Read through all Questions before you start working on the answers.
Begin each Question on a new sheet.
Write clearly; unreadable = wrong!

For each part Question, if your solution consists of more than a few lines of Haskell
code, use your common sense to decide whether to include a short comment to
explain your solution.

You can use any of the standard Haskell functions listed at the back of this exam
document.

Full points are given to solutions which are short, elegant, and correct. Fewer
points may be given to solutions which are unnecessarily complicated or unstruc-
tured.

You are encouraged to use the solution to an earlier part of a Question to help
solve a later part — even if you did not succeed in solving the earlier part.

1. (8 points) For each of the following definitions, give the most general type, or write ”No

type” if the definition is not correct in Haskell.
fa x = "Hello, "++x
fb (x:y) = (x,y)
fc x y z = x<=y && y<=z
fd = map . map
Solution:
fa :: String -> String
fb :: [a]l —> (a,[al)
fc :: Ord a => a -> a -> a -> Bool
fd :: (a->b) -> [[al]l -> [[b]l]

2. (8 points)

(a)

(3 points) Define a function subsequences that computes all the subsequences of
a list, i.e. all the list you get by keeping some of the elements in the list (including
none of the elements and all of the elements).

subsequences :: [a] -> [[al]

The elements within each subsequence should appear in the same order as in the
argument list, but it doesn’t matter in which order the subsequences appear, i.e.
it could be the shortest subsequence first, the longest subsequence first, or some
other order. Examples:

subsequences [1] == [[],[1]]
subsequences [1,2] == [[],[1],[2],[1,2]]
Subsequences ||abC" == ["abc“,"ab","aC","a","bC","b","C"," ||]

(3 points) Define a function isSubsequenceOf that checks if one list is a subse-
quence of another list.

isSubsequence0f :: Eq a => [a] -> [a] -> Bool
Examples:
e ‘isSubsequence0f‘ "abc" == True
"a" ‘isSubsequence0f‘ "" == False
"a" ‘isSubsequence0f‘ "abc" == True
"ac" ‘isSubsequence0f‘ "abc" == True
"ad" ‘isSubsequence0f‘ "abc" == False
"cb" ‘isSubsequence0f‘ "abc" == False

(2 points) Write a property that can be used with QuickCheck to test that all the
subsequences returned by subsequences really are subsequences of the argument
list.

Solution:

-- (a)
-- A list of length n has 2°n subsequences, since for each element you
-- can choose to include it or not (n choices with 2 possibilites).
subsequences [] = [[]]
subsequences (x:xs) = map (x:) pxs ++ pxs

where pxs = subsequences xs

subsequences_v2 [] = [[]]

subsequences_v2 (x:xs) = [ss | ss’ <- subsequences_v2 xs,
ss <- [ss’,x:ss’]]

-- (b)

isSubsequenceOf [] ys = True

isSubsequencelf xs (] = False

isSubsequence0f (x:xs) (y:ys) | x==y isSubsequencelf xs ys
| otherwise = isSubsequenceOf (x:xs) ys

-- (o)
prop_subsequences :: [Int] -> Bool
prop_subsequences xs = all (‘isSubsequenceOf‘ xs) (subsequences xs)

prop_subsequences_v2 :: [Int] -> Property
prop_subsequences_v2 xs = length xs<15 ==>

all (‘isSubsequenceOf‘ xs) (subsequences xs)
-- Since a list of length n has 2°n subsequences, we limit the length of
-- the lists we test, so that the tests complete in a reasonable
-- amount of time.

3. (12 points) Consider the following function definitions:

checkEgn :: Equation -> Bool
checkEqn (Eqn el e2) = eval el == eval e2

eval :: Expr -> Int
eval (Num x) = x

eval (Op op el e2) = evalOp op (eval el) (eval e2)

evalOp :: Oper -> Int -> Int -> Int

evalOp Add = (+)
evalOp Sub = (-)
evalOp Mul = (*)

(a) (3 points) Give the data type definitions needed for the above function definitions
to be correct.

(b) (3 points) Define a QuickCheck test data generator

rExpr :: Int -> Gen Expr

such that rExpr n generates random expressions containing n operators. For the
numbers in the expressions, use random ones from the sequence 1, 2 ... 10.

(3 points) Define a function
exprs :: [Int] -> [Expr]

that generates all expressions that contain the given numbers in the given order.
Examples:

exprs [1] == [Num 1]

exprs [1,2] ==
[Op Add (Num 1) (Num 2),0p Sub (Num 1) (Num 2), -- 1+2, 1-2
Op Mul (Num 1) (Num 2)] -— 1*2,

(3 points) Define a function
equations :: [Int] -> [Equation]

that generates all equations that are true and contain the given numbers in the
given order. Examples:

equations [1,2,3] ==

[Eqn (Op Add (Num 1) (Num 2)) (Num 3)] -- 1+ 2 =3
equations [3,2,1] ==

[Eqn (Num 3) (Op Add (Num 2) (Num 1)), -- 3 =2 + 1

Egqn (Op Sub (Num 3) (Num 2)) (Num 1)] -- 3 -2-=1

Hints: (i) Generating a list of expressions with list comprehensions is very similar to
generating a random expression with the Gen monad and the do notation. (ii) A helper
function that generates pairs of expressions can be useful in both exprs and equations.

Solution:

-- (a)

data Equation = Eqn Expr Expr deriving (Eq,Show)
data Expr = Num Int | Op Oper Expr Expr deriving (Eq,Show)
data Oper = Add | Sub | Mul deriving (Eq,Show)

-- deriving (Eq,Show) can be useful for testing, but is not needed
—-— for anything else in this solution

-- (b)
rExpr 0 = Num <$> choose (1,10)
rExpr n = do op <- elements [Add,Sub,Mul]
m <- choose (0,n-1)
el <- rExpr m
e2 <- rExpr (n-1-m)
return (Op op el e2)
-- (c)
exprs [1 = []
exprs [x] = [Num x]
exprs xs = [Op op el e2 | (el,e2) <- twoExprs xs,

op <- [Add,Sub,Mul]]

twoExprs xs = [(el,e2) | i <- [1..length xs-1],
let (xsl,xs2) = splitAt i xs,
el <- exprs xsl,
e2 <- exprs xs2]

-- (d)

equations xs = [eqn | (el,e2) <- twoExprs xs,
let eqn = Eqn el e2,
checkEqn eqn]

4. (8 points) Consider the following data type for trees where the leaves contain one type
of values and the internal nodes contain another type of values:

data Tree a b = Leaf a | Node b (Tree a b) (Tree a b)

(a) (3 points) Define a function that corresponds to map for lists:
mapTree :: (al->a2) -> (b1->b2) -> Tree al bl -> Tree a2 b2

(b) (2 points) Define a function that ”folds” a tree which has functions in the internal
nodes. (So unlike foldr for lists, the function used to combine values is not given
as an extra argument.)

foldTree :: Tree a (a->a->a) -> a

(c) (3 points) Reimplement eval from Question 3 by first converting an Expr to a
Tree Int Oper, then using mapTree and foldTree.

eval_v2 :: Expr -> Int

Solution:

-- (a)

mapTree 1f nf (Leaf b) = Leaf (1f b)

mapTree 1f nf (Node a tl t2) = Node (nf a) (mapTree 1f nf t1)
(mapTree 1f nf t2)

-- (b)

foldTree (Leaf a)

foldTree (Node f t1 t2)

a
f (foldTree t1) (foldTree t2)

-- (o)
eval_v2 = foldTree . mapTree id evalOp . convert
where
convert :: Expr -> Tree Int Oper

convert (Num x) = Leaf x
convert (Op op el e2) = Node op (convert el) (convert e2)

-- Extra:
prop_eval e = eval_v2 e == eval e

instance Arbitrary Expr where
arbitrary = sized (\n->rExpr =<< choose (0,n))

5. (4 points) Write a function that reads lines of text form a number of files and outputs
all the lines sorted.

sortFiles :: [FilePath] -> I0 ()

Example: sortFiles ["A.txt","B.txt"]

A.txt B.txt | Output
PHP Lisp | C
Haskell | C Erlang
Python Java | Haskell
Erlang Java
Lisp
PHP
Python

In addition to the functions listed at the back of this exam, the following library function
might be useful:

-- Functions to output text
putStr, putStrLn :: String -> I0 ()

—- readFile reads the contents of a file
readFile :: FilePath -> IO String

-- File names are strings.
type FilePath = String

Solution:

sortFiles paths = do ls <- concatMap lines <$> mapM readFile paths
putStr (unlines (sort 1s))

{- This is a list of selected functions fromthe
st andard Haskel |l nodul es: Prel ude Data. Li st
Dat a. Maybe Dat a. Char Control . Monad -}

-- standard type cl asses

cl ass Show a where
show :: a -> String

class Eq a where

(==), (/=) a -> a -> Bool

class (Eq a) => Od a where
(), (=), (>3, (» :: a->a -> Bool
max, mn i a->a->a

class (Eq a, Show a) => Num a where

(+), (), (™ > a->a->a
negat e 1 a->a
abs, signum ra->a

fronl nt eger Integer -> a

class (Numa, Od a) => Real a where
t oRat i onal : a -> Rational
class (Real a, Enuma) => Integral a where
quot, rem it a->a->a
di v, nod i a->a->a
t ol nt eger a -> I nteger
class (Numa) => Fractional a where

() i a->a->a
fronRati onal Rational -> a

class (Fractional a) => Floating a where
exp, log, sagrt ra->a
sin, cos, tan ra->a

class (Real a, Fractional a) => Real Frac a where
truncate, round (Integral b) =>a ->b

ceiling, floor (Integral b) =>a ->b

-- nunerical functions

even, odd (Integral a) => a -> Bool
even n =n‘rem 2 ==20
odd = not . even

-- nonadi c functions
sequence Monad m=> [ma] -> m|[a]
sequence = foldr ntons (return [])
where ntons p g = do x <- p
Xs <- q
return (Xx:Xs)

sequence_ Monad m=> [ma] -> m ()
sequence_ xs = do sequence Xs
return ()

lift™m (Mnad m => (al ->r) ->mal ->mr
liftMf ni = do x1 <- ni
return (f x1)

-- functions on functions

id o a->a

id x = X

const i a->b ->a

const X _ = X

(.) i (b->¢) ->(a->b) ->a
f o] =\ x ->f (g x)

flip :: (a->b ->c¢) ->b ->a ->
flipf xvy =f yx

(%) i (a->b) ->a->b

f$ x =f x

-- functions on Bool s

data Bool = False | True

(&), (I1) :: Bool -> Bool -> Bool
True && X = X

Fal se && _ = Fal se

True || _ = True

False || x =X

not :: Bool -> Bool

not True = Fal se

not Fal se = True

-- functions on Maybe

data Maybe a = Nothing | Just a

i sJust Maybe a -> Bool
i sJust (Just a) = True
i sJust Not hi ng = Fal se

i sNot hi ng :: Maybe a -> Bool
i sNot hi ng = not i sJust
fromJust

Maybe a -> a
fromlust (Just a) a

maybeTolLi st :: Maybe a -> [a]
maybeToLi st Not hi ng = [1]
maybeToLi st (Just a) = [a]
i st ToMaybe :: [a] -> Maybe a

st ToMaybe [] = Not hi ng

st ToMaybe (a:_) = Just a
cat Maybes :: [Maybe a] -> [a]
cat Maybes Is =[x | Just x <- Is]

-- functions on pairs

f st :: (a,b) -> a
fst (x,y) = X

snd :: (a,b) ->b
snd (Xx,Y) =Yy

swap 1 (a,b) -> (b, a)

swap (a, b) = (b, a)

->

Cc

[

curry :: ((a, b) ->¢c) ->a->b ->c
curry f x vy = f (x,y)

uncurry (a->b->c¢c) ->((a, b) ->¢)
uncurry f p = f (fst p) (snd p)

-- functions on lists

map :: (a ->b) ->[a] -> [b]
mp f xs = [f x| x <- xs]

(++) :: [a] ->[a] ->[a]
xs ++ ys = foldr (:) ys xs

filter (a -> Bool) ->[a] -> [a]
filter pxs = [x| x <- xs, p x]

concat :: [[a]] -> [a]
concat xss = foldr (++) [] xss

concat Map (a->1[b]) ->[a] ->[b]
concat Map f = concat map f

head, | ast : [a] -> a

head (x:_) =X

last [x] =X

last (_:xs) = last xs

tail, init 1 [a] ->[a]

tail (_:xs) = Xs

init [x] =11

init (x:xs) = x init xs

nul | ;1 [a] -> Bool

null [] = True

null (_:)) = Fal se

| engt h o [a] ->Int

| engt h = foldr (const (1+)) O
[GRD)] 2 [a] ->Int -> a
(x:_) 0 =X

(_:xs) !'l' n =xs !l (n-1)

fol dr (a->b ->b) ->b ->[a] ->b
foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

f ol dl :: (a->b->a) ->a ->[b] ->a
foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs
iterate 1 (a->a) ->a->[a]
iterate f x = X iterate f (f x)
r epeat iroa->[a]

repeat x = XS where XS = X:XS
replicate o Int ->a ->[a]
replicate n x = take n (repeat x)
cycle o [a]l ->[a]

cycle [] = error "Prelude.cycle: enpty list"

cycle xs = xs' where xs' = XS ++ Xs’

tails c: [a]l ->[[a]l
tails xs = XS case xs of

[] ->[1

_ 1 xs' ->tails xs’
take, drop S Int ->[a] -> [a]
take n _ | n<=0= []
take _ [] = Il

X

take n (x:xs) =

drop n xs |

take (n-1) xs

n<=0= Xxs

drop _ [] = [1

drop n (_:xs) =

drop (n-1) xs

splitAt o Int ->[a]l -> ([a],[a])
splitAt n xs = (take n xs, drop n xs)
takeWhil e, dropwWile :: (a -> Bool) ->[a] -> [a]
takeWhile p [] = 1

takeWhile p (x:xs)

dropWiile p []

| p x = X
| otherwise = []

[1

takeWhile p xs

dropWiile p xs@x: xs')

span
span p as = (takewWile p as,

li nes,

unl i nes,

| p x = dropWiile p xs’
| otherwi se = xs

-> ([a], [a])
dropWiile p as)

(a -> Bool) -> [a]

wor ds String -> [String]
l'i nes "apa\ nbepa\ ncepa\ n"

== ["apa", "bepa", "cepa"]
words "apa bepa\n cepa”

== ["apa", "bepa", "cepa"]

unwor ds [String] -> String
unl i nes ["apa", "bepa", "cepa"]
== "apa\ nbepa\ ncepa"
unwor ds ["apa", "bepa", "cepa"]
== "apa bepa cepa"

reverse o [a] ->[a]

reverse = foldl (flip (:)) []

and, or :: [Bool] -> Bool

and = foldr (&%) True

or = foldr (|]) False

any, all :: (a ->Bool) ->[a] -> Bool
any p = or map p

all p = and map p

elem notEl em :: (Eq a) => a ->[a] -> Bool
el em x = any (== x)

not El em x = all (/=x)

| ookup :: (Eq a) => a ->[(a,b)] -> Maybe b

| ookup key [] =

Not hi ng

| ookup key ((x,y):xys)

| key == x =
| otherwi se =

Just y
| ookup key xys

sum product (Num a
sum = foldl
pr oduct = foldl
maxi mum m ni num : (Od a
maxi mum [] = error "Prelud
maxi mum (x: xs) = foldl max
mnimmI[] = error "Prelud
m ni mum (x:xs) = foldl mn
zip oo [a] ->
zip = zi pWt
zi pWth 11 (a->b-
zipWth z (a:as) (b:bs)

= zahb
zipWth _ _ =]
unzi p [(a, b)
unzi p =

foldr (\(a,b) 1A|mw.6mv -

nub : Eq a =
nub [] =[]
nub (x: Xxs) = x : nub
del ete :: Eq a =
delete y [] =11
delete y (x:xs) =

if x ==y then xs e
(\\) :: Eq a =
(\\) = foldl (
uni on Eq a =
uni on Xs ys = xs ++ (
i ntersect : Eq a =
intersect xs ys =[] x| X
i nt er sperse roa -> |

-- intersperse 0 [1, 2, 3,4]

transpose o [[all
-- transpose [[1,2,3],[4,5
- - == [[1,4],[2,5],[3.,6

partition (a -> Bool)

on p xs =
(filter p xs, filter (

group 0 Eq a =

group = groupBy (==

gr oupBy (a -> a -> Bool

groupBy _ [] = [

groupBy eq (x:xs) = (x:ys
where (ys, zs

i sPrefixOf Eq a => [a]
i sPrefixOf [] _ =
i sPrefixOf _ [1] =

i sPrefixOf (x:xs) (y:ys)

) =>[a] ->a
() 0

(*) 1

) =>[a] ->a

e.maxi mum enpty list"

X Xs

e.mnimum enpty list"
X XS

[b] ->[(a b)]
h ()

>c) -> [a]->[b]->[c]

zipWth z as bs

1 ->([a].[b])

> (aras, b:bs)) ([1.[]1)
> [a] -> [a]

[y| y < xs, x/=y]
>a->[a] ->[a]

I se x delete y xs
> [a] ->[a] -> [a]
flip delete)

> [a] -> [a] -> [a]
ys \\ xs)

> [a] ->[a] -> [a]

<- xs, x ‘elem ys]

a] ->[a]

==11,0,2,0,3,0,4]

-> [[a]]
. 6]1]
11

->[a] -> ([a].[a])
not . p) xs)

> [a] ->[[a]]

) ->T[a] ->[[a]]

) : groupBy eq zs
) = span (eqg X) Xs
-> [a] -> Bool

True

Fal se

X ==Yy

&& i sPrefixOf xs ys

i sSuf fixOf Eq a => [a] -> [a] -> Bool
isSuffixO x y = reverse x ‘isPrefixOF reverse y
sort (Od a) =>[a] ->[a]

sort = foldr insert []

insert (Od a) =>a->[a] ->[a]
insert x [] = [x]

insert x (y:xs) =
if x <=y then x:y:xs else y:insert x xs

-- functions on Char

type String = [Char]

t oUpper, tolLower Char -> Char
-- toUpper 'a =="A

-- toLower 'Z == "'z’

di gi t Tol nt Char -> Int

-- itTolnt '8 == 8
intToDigit :: Int -> Char

-- intToDigit 3 == "3’

ord :: Char -> Int

chr :: Int -> Char

-- Signatures of sonme useful functions
-- from Test. Qui ckCheck

arbitrary Arbitrary a => Gen a
-- the generator for values of a type
-- in class Arbitrary, used by qui ckCheck

-> CGen a
in the given

choose Random a => (a, a)
-- Cenerates a random el enent
-- inclusive range.

oneof [Gen a] -> Gen a
-- Randomly uses one of the given generators
frequency [(Int, Gen a)] -> Gen a

-- Chooses fromlist of generators with
-- wei ghted random di stri bution.

elenments :: [a] -> Gen a
-- Cenerates one of the given val ues.

listOF Gen a -> Gen [a]
-- Cenerates a list of random | ength.

vectordf :: Int -> Gen a -> Gen [a]
-- Cenerates a list of the given |ength.

si zed (Int -> Gen a) -> Gen a
-- construct generators that depend on
-- the size paraneter.

