RE-EXAM

Introduction to Functional Programming
TDA555/INN040

DAY: 19 January 2007 TIME: 8.30 -- 12.30 PLACE: M-salar

Responsible: Koen Lindstrdm Claessen, Datavetenskap

Result: Published 31 January, at the latest
Aids: An English (or English-Swedish, or English-X) dictionary
Grade: There are 4 assignments (with 18 + 21 + 18 + 3 = 60 points);

a total of at least 27 points guarantees a pass

Please read the following guidelines carefully:

» Note that the point-scale of this exam is different than the previous exam! You
can get more points per question, but also more points are required to pass

¢ Please read through all assignments before you start working on the answers

¢ Answers can be given in Swedish or English

» Begin each assignment on a new sheet

e Write your personal number on each sheet

¢ Write clearly; unreadable = wrong!

e Full marks are given to solutions which are short, elegant, efficient, and correct

¢ Less marks are given to solutions which are unnecessarily complicated or
unstructured

¢ For each question, if your solution consists of more than 2 lines of Haskell code,
include a short description of what your intention is with your solution

¢ You can use any standard Haskell function in your solution --- a list of some
useful functions is attached

¢ You are encouraged to use the solution of an earlier part of an assignment to
help solve a later part --- even if you did not succeed in solving the earlier part!

Good Luck!

Assignment 1 — List Programming (total 18p)

In this assignment, you will solve three list programming exercises in Haskell.
(4p) Question A

Define a function:

suffixes :: [a] -> [[a]]

that, given a list, produces all suffixes of the list. A list as is the suffix of a list bs, if the list bs
ends with the elements of as, in that order.

Example:

Main> suffixes "“abra”
[\\abrall , \\brall , \\rall , \\all , \\II]

(5p) Question B
Define a function:
contains :: Eq a => [a] -> [a] —-> Bool

that, given two lists, checks if the second list is contained as a sublist in the first list. (A list as is
called a sublist of a list bs, if bs can be written as xs++as++ys, for some lists xs and ys.)

Examples:

Main> “abracadabra” ‘contains’' “cad”
True

Main> “abracadabra” ‘contains’' “radab”
False

Hint : You might find it useful to use the function suffixes.
(5p) Question C
Define a function:
groups :: Int -> [a] —> [[a]]
that, given a number k and a list, chops the list up into sublists of length k.
Example:

Main> groups 2 [3,1,4,1,5,9]
[[3,1],1[4,1],1[5,9]1]

Main> groups 3 "SEND MORE YOGURT"
[\\SENII , IID MII , " OREII , ” YOII , IIGURII , ” TII]
(4p) Question D

Define two QuickCheck properties characterising the function groups above: (1) All groups

should have the correct length (give special care to the length of the last group!); (2) Combining
all groups together should give back the original string.

Assignment 2 — Summarizing Replies to a Questionnaire (total 21p)

In this assignment, we will develop a Haskell program that can summarize replies to a questionnaire,
for example a course questionnaire. The questionnaire is web-based, and stores all replies it has
gotten so far in a special file.

An example course questionnaire might look as follows:

1. What is your general impression of the course?

2. What did you think of the exercises classes?

3. What did you think of the fact that there was only one lecture in week 2?
4. What did you think of the lab assignments?

5. How difficult was the course for you?

A reply from one person is modelled by a list of pairs. An example of a reply is the following:

aReply :: Reply
aReply = [(1,"very good"), (3,"bad"), (4,"okay")]

This models the fact that the person who entered the answers, answered “very good” on question 1,
“bad” on question 3, and “okay” on question 4. Note that not all questions have to be answered by a
person. For example, the above person did not answer question 2 and 5.

Here is an example of a list of replies:
someReplies = [[(1,"very good"), (3,"bad"), (4,"okay")]
, [(2,"good"), (3,"bad"), (4,"good"), (5,"difficult")]
, [(4,"okay"), (5,"very difficult")]
1
(2p) Question A
Give a suitable type definition of the type Reply.
What is the type of the function someReplies?
(2p) Question B
A reply should not have two answers for the same question. Define a function:
validReply :: Reply —-> Bool
that checks this.
(3p) Question C
Define a function:
questions :: [Reply] -> [Int]

that, given a list of replies, returns all question numbers that were answered in any of the replies.
The list should not contain any duplicates, and should contain the question numbers in the right
order.

Example:

Main> questions someReplies
[1,2,3,4,5]

(3p) Question D
Define a function:
answers :: Int -> [Reply] -> [String]

that, given a question number and a list of replies, gathers all answers to this question given in
any of the replies. Note: This list can contain duplicates!

Examples:

Main> answers 3 someReplies
[\\badll , IlbadII]

Main> answers 5 someReplies
[“"difficult”,”very difficult”]

(4p) Question E
Define a function:
summary :: [Reply] -> [(Int, [(Int,String)])]

that, given a list of replies, produces a table, containing, for each question, all answers that were
given to that question, and how many times that answer was given. The answers should be
sorted in such a way that the most frequent answer comes first.

Example:

Main> summary someReplies
[(1,[(1,"very good")]), (2,[(1,"good")]),
(3, [(2,"bad")]1), (4,[(2,"okay"), (1,"good")]),
(5,[(1,"very difficult"), (1,"difficult")]) 1]

We can see for example that the answers to question 3 were 2 “bad”s, and the answers to
question 4 were: 2 “okay"”s and 1 “good”.

(4p) Question F
Define a function:
createSummary :: FilePath -> IO ()

that, given the name of a file containing the replies, prints out a summary of the replies in the file.
The format of the replies in the file is in the standard Haskell format. You may assume the
existence of a function read :: String -> [Reply] that converts a string into a list of
replies.

Example: (when given a file with replies, called someReplies.txt)

Main> createSummary "“someReplies.txt”

Ql: 1 very good

Q2: 1 good

Q3: 1 bad

Q4: 2 okay, 1 good

Q5: 1 very difficult, 1 difficult

(3p) Question G

To get a better overview of the actual answers that are given, we would like to produce an
additional summary of the results, where answers like “good” and “very good” (or “difficult” and
“very difficult”) are grouped together. In this way, it is easier to see what percentage of answers
are on the “right side”.

Define a function:
mild :: [Reply] -> [Replyl]

that transforms all answers in the given replies into milder answers, by removing the word “very”
from them.

Example: (after applying the function mild to the contents of the file someReplies.txt,
resulting in the file someMildReplies.txt)

Main> createSummary "“someMildReplies.txt”

Ql: 1 good

Q2: 1 good

Q3: 1 bad

Q4: 2 okay, 1 good
Q5: 2 difficult

Assignment 3 — People and Companies (total 18p)

In this assignment, we will write some Haskell code that can help us manage a company, where
people work and get a salary.

We start by modelling people using a Haskell datatype. We define the following:

data Person = MkPerson String Double

Here, MkPerson is a constructor with two arguments: the name of the person as a string, and their
monthly salary measured in Swedish krona.

(1p) Question A

Define a function:

anna :: Person

that models a person called Anna, who earns 25.000 SEK per month.
(2p) Question B

Define a function:

showPerson :: Person -> String
that represents a person as a string, showing their name and their salary.

Example:

Main> showPerson anna
”"Anna, 25000.0 SEK per month”

The next step is to model a whole company where people work. Companies are usually divided up
into divisions. Each division has a manager (a person), and possibly a humber of divisions that he or
she manages. We use the following recursive datatype:

data Division = MkDivision Person [Division]

A division can consist of only one person, in which case the list of divisions under that person is
empty. For example, the division MkDivision anna [] only consists of Anna, by herself. People at
the company that are not managing anyone are called workers. In the example, Anna would be called
a worker.

An example of a larger division is:

example :: Division
example = MkDivision angela [MkDivision anna []
, MkDivision per [MkDivision kalle []]

1
The above describes a division with one manager, Angela, who manages two sub-divisions: Anna,
who works by herself, and Per, who in turn is the manager over the division consisting of Kalle. The
workers in the above example are Anna and Kalle.

A whole company is simply seen as one big division.
type Company = Division

You are allowed to make use of the following function.
persons :: Company —> [Person]

This function, given a company, produces a list of all people in the company.

(3p) Question C

Define a function showCompany :: Company -> String that represents all persons working
at the company as a string. Here, each person occurs on one line.

Main> putStr (showCompany example)

Angela, 73000.0 SEK per month

Anna, 25000.0 SEK per month

Per, 31000.0 SEK per month
Kalle, 21000.0 SEK per month

(4p) Question D

Define a function workers :: Company -> [Person] that produces a list of all workers in a
given company. (Remember that a worker is a manager of a division without any other people.)

(4p) Question E

Define a function giveRaise :: Double -> Company -> Company that increases
everyone’s salary by a given factor. For example, giveRaise 1.1 should give everyone a salary
raise of 10%.

(4p) Question F

Functions like persons and workers are quite common, and their definitions are very much
alike. Define a higher-order function gather that can gather all kinds of information from a
company. The function is parameterized by a function that tells it what information to gather.

gather :: (Division -> [a]) -> Company -> [a]

So, gather what gathers information from each division in the whole company that is specified
by the function what. An example of the use of gather is the following alterative definition of the
function persons:

persons :: Company —-> [Person]
persons comp = gather person comp
where

person (MkDivision p _) = [p]

Here, the function person specifies what kind of information to gather from each division.

Assignment 4 -- Background Knowledge (total 3p)

In this assignment, you have the chance to show us what background knowledge you have picked up
during the course.

Please only answer one of the following questions. You can choose which one! (Do not pick more than
one — I will only look at the first of these questions you decide to answer.)

(3p) Question A

Discuss the difference between functions of type A -> B and functions of type A -> 10 B. Are
there things that you can do with one that you cannot do with the other? What is the point of
separating these two kinds of functions? How does this difference influence the design of your
program?

(3p) Question B

What are the main differences between the programming language Haskell and the programming
language Erlang? What are the main similarities? You may discuss programming language
“features” as well as the difference in purpose behind the two.

(3p) Question C

In a seqguential or imperative programming language, a programmer expresses a sequence of
instructions that should be carried out by the computer, one step at a time. Discuss what the
disadvantage of this principle is in a parallel setting (where many things happen at the same
time), for example when using a dual core processor. What can the advantage of functional
programming be in this context?

Appendix — Standard Haskell Functions

This is a list of selected functions from the standard Haskell modules: Prelude, Data.List, Data.Maybe,
Data.Char. You may use these in your solutions.

—-— standard type classes

class Show a where
show :: a -> String

class Eg a where
(==), (/=) :: a -> a —-> Bool

class (Eg a) => Ord a where
(<), (=), (>=), (>) :: a -> a —> Bool

max, min rra —> a -> a

class (Egq a, Show a) => Num a where

), (=), (*) a -—>a —>a
negate ira —> a
abs, signum a —-> a
fromInteger Integer —-> a

class (Num a, Ord a) => Real a where

toRational :: a —> Rational

class (Real a, Enum a) => Integral a where
quot, rem it a —> a —> a
div, mod tra —> a —> a
tolInteger :: a —> Integer

class (Num a) => Fractional a where
(/) it a ->a -> a
fromRational :: Rational -> a

—— numerical functions

even, odd :: (Integral a) => a -> Bool
even n =n ‘rem 2 ==
odd = not . even

—-— monadic functions

sequence = foldr mcons (return [

sequence :: Monad m => [m a] -> m [a]
1
where mcons p g =

do x <- p; xs <- q; return (x:xs)

sequence__ :: Monad m => [m a] -> m ()
sequence_ xs = do sequence xs; return ()

—-— functions on functions

id i a —> a

id x = x

const tra > b —> a
const x _ = x

(.) :: (b ->c¢c) > (a > Db) > a > c

f . g =\ x —> f (g x)

flip i (a->b ->c¢c) >Db -—>a ->c
flip £ x y =f vy x

($) (a => b) -> a > Db

f$ x = f x

—-— functions on Bools

data Bool = False | True

(&&), (11) :: Bool -> Bool -> Bool
True && x = X

False && _ = False

True [— = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

—-— functions on Maybe

data Maybe a = Nothing | Just a

isJust :: Maybe a -> Bool
isJust (Just a) = True

isJust Nothing = False

isNothing :: Maybe a —-> Bool
isNothing = not . isJust
fromJust :: Maybe a -> a
fromJust (Just a) = a

maybeToList :: Maybe a —> [a]
maybeToList Nothing = []

maybeToList (Just a) = [a]

listToMaybe :: [a] —> Maybe a
listToMaybe [] = Nothing
listToMaybe (a:_) = Just a

—-— functions on pairs

fst i (a,b) —> a

fst (x,vy) = X

snd :: (a,b) —> Db

snd (x,V) =y

curry :: ((a, b) =>c¢c) > a -> b -> ¢
curry f x y = £ (%,)

uncurry :: (a -> Db ->c) -> ((a, b) -> ¢)

uncurry f p f (fst p) (snd p)

—— functions on lists

map :: (a -> b) -> [a] —-> [b]

map £ xs = [£ x | x <= xs]

(++) :: [a] -> [a] —-> [a]

xs ++ ys = foldr (:) ys xs

filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x |
concat :: [[a]l]l —-> [a]

concat xss = foldr (++) [] xss
concatMap :: (a —-> [b]) -> [a] -> [b]
concatMap f = concat . map f

head, last :: [a]l —> a

head (x:_) = x

last [x] = x

last (_:xs) = last xs

tail, init o [al > [a]

tail (_:xs) = xs

init
init

[x]

(x:x5)

[

= X

null
null
null

=T
F

[]
(L)

length
length
length

=0
=1

(_:1)

= X
= X

foldr
foldr
foldr

f
£

foldl
foldl
foldl

£
£

iterate
iterate £

repeat
repeat x

replicate
replicate

cycle
cycle []
cycle xs

take,
take
take
take

drop

drop
drop
drop n
splitAt
splitAt n xs

takeWhile, dropWhile
takeWhile p []
takeWhile p (x:xs)

I p x

| otherw

dropWhile p []
dropWhile p xs@ (x:xs

I p x

| otherw
lines, words
-— lines "apa\nbepa\
-— words "apa bepa\
unlines, unwords
—-— unlines ["apa","b
—-— unwords ["apa","b
reverse
reverse =
and, or
and
or
any, all

any p

]
init xs

[a] —> Bool

rue

alse

[a] —-> Int

+ length 1

[a] -> Int

s !l (n-1)

a->b ->Db) —>b

(
4
f x (foldr f z xs)
(a => b —>
4

foldl £

a) —> a

(f z x) xs

(a => a) ->
X iterate

a
f

-> [a
(£ %)
a —> [a]

xs where xs X:1XS
Int -> a —>

take n

la]
(repeat x)

[a] —> [a]
error "Prelude.cycl
xs' where xs' Xs

Int —>
[]
[l

X

—>

[a]

take (n-1
XS
[l
drop (n-1) xs
Int —> [a]
(take n xs,

—>

a

[

-> Bool)

takeWhil

ise

'
)
dropWhile p
ise xS
String —->
ncepa\n" =
n cepa"

[String]
[llapa",
["apa”,

[String] ->
epa", llcepa"]
epa”, "cepa”]

String
—_ ap
== "ap

[a] —>
foldl

[a]

(flip (:)) []
[Bool]
foldr

foldr

-> Bool
(&&) True
(I'l) False

(a —> Bool)
or map p

->

[a]

> -> b

[a]

-> [b] -> a

]

e: empty list"
++ xs'

[a]
)

Xs

(fal, [a])

drop n xs)

-> [a] —> [a]

e p xs

xs'

"bepa", "cepa"]

"bepa", "cepa"]

a\nbepal\ncepa"
a bepa cepa”

-> Bool

all p = and . map p

elem, notElem :: (Eq a) => a —> [a] —-> Bool
elem x = any (== x)
notElem x = all (/= x)
lookup :: (Egq a) => a —> [(a,b)] -> Maybe b
lookup key [] = Nothing
lookup key ((x,y) :xys)
| key == x = Just y
| otherwise = lookup key xys
sum, product :: (Num a) => [a] -> a
sum = foldl (+) O
product = foldl (*) 1
maximum, minimum :: (Ord a) => [a] -> a
maximum [] = error "Prelude.maximum: empty list"
maximum xs = foldll max xs
minimum [] = error "Prelude.minimum: empty list"
minimum xs = foldll min xs
zip :: [a]l —> [b] —> [(a,b)]
zip = zipWith (,)
zipWith i (a—>b->c) —> [a]l->[b]l->[c]

zipWith z (a:as) (b:bs)
= z a b : zipWith z as bs

zipWith _ _ _ = [l

unzip o [(a,b)] —> ([al, [b])

unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([1,[])
nub :: Eqg a => [a] —> [al]

nub [] =[]

nub (x:xs) x :nub [y | vy <= xs, v /=x]

delete :: Ega =>a -> [a] —> [a]
delete y [] =[]
delete y (x:xs) = if x ==y then xs else x : delete y xs
(\\) :: Eq a => [a] -> [a] —> [a]
AR = foldl (flip delete)
union :: Eq a => [a] —> [a] —> [a]
union xs ys = xs ++ (ys \\ xs)
intersect :: Eg a => [a] —> [a] —> [a]
intersect xs ys = [x | x <= xs, X ‘elem ys]

intersperse troa —> [a] —> [a]
-- intersperse 0 [1,2,3,4] == [1,0,2,0,3,0,4]

partition :: (a -> Bool) -> [a] -> ([al,[al])
partition p xs = (filter p xs, filter (not . p) xs)
group 1 Eq a => [a] —> [[a]ll]

Z- group "aapaabbbeee” == ["aa","p","aa", "bbb", "eee"]
isPrefixOf, isSuffixOf :: Eqg a => [a] -> [a] —> Bool
isPrefixOf [] _ = True

isPrefixOf _ [] = False

isPrefixOf (x:xs) (y:ys) = x ==y && isPrefixOf xs ys
isSuffixOf x y = reverse x 1sPrefixOf" reverse y
sort :: (0rd a) => [a] —> [a]

sort = foldr insert []

insert :: (0rd a) => a —-> [a] —-> [a]

insert x [] = [x]

insert x (y:xs) if x <= y then x:y:xs else y:insert x xs

—-— functions on Char

type String = [Char]
toUpper, tolLower :: Char -> Char
—-— toUpper 'a' == 'A'

-— toLower 'Z' == 'z'

digitToInt :: Char -> Int
—— digitToInt '8' == 8

intToDigit :: Int -> Char
—— intToDigit 3 == '3'

ord :: Char -> Int
chr :: Int -> Char

