
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT391
Tuesday, 16 March 2021

Exam supervisor: G. Schneider (gersch@chalmers.se, 072 974 49 64)

(Exam set by G. Schneider, based on the course given Jan-Mar 2021)

Material permitted during the exam (hjälpmedel):
As the exam is run remotely we cannot restrict your usage of material.

Not allowed to use the Internet.

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade Chalmers Grade GU
28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade Chalmers Grade GU
40–59 3 G
60–79 4 G
80–100 5 VG

The exam results will be available in Ladok within 15 working days after
the exam’s date.

Instructions and rules:

• You should be monitored on the dedicated zoom channel while taking
the exam!

• Submit the exam solution as a PDF file on Canvas. The solution
should be typeset using your favourite software. No scanned hand-
written notes or diagrams are allowed. (There will be a Word and
Latex template for writing your solution; see comment at the end)

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

1

• Answer each question on a new page. Glance through the whole paper
first; five questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

• A Word template and a Latex template are available on Canvas so you
can use them to deliver your answer.

2

Q1 (10 p). Figure 1 shows the Java code of an implementation of strong semaphores
using Java’s explicit mechanism for scheduling threads (for suspending
and resuming threads).

NOTE: blocked is a queue.

Figure 1: Q1: A Java implementation of strong semaphores

(Part a). (3 p). What makes the proposed solution to be for “strong”
semaphores (in contrast to “weak” semaphores)?

Answer: The use of notifyAll() and the fact that blocked is a FIFO
queue.

(Part b). (7 p). The programmer who suggested this solution is
convinced it is correct, but when showing it to a colleague, the latter
did not understand why the up() method checks whether the blocked
queue is empty (if (blocked.isEmpty()) . . .) before increasing the
counter count.

Is this check really needed? If you answer YES, justify why giving an
informal argument. If you answer NO, explain what happens if you do
not remove the if checking in the code. [An answer without justifica-
tion will not be sufficient to get full points.]

Answer: The problem is that deadlock may arise: if count is zero,
many threads may keep looping forever in the while loop containing the

3

Figure 2: Q1: A Java implementation of strong semaphores [Correct imple-
mentation]

wait() instruction. See Figure 2 for a correct implementation.

4

Q2 (18 p). In our lectures we have seen how to use state/transition diagrams to
reason about concurrent programs.

A programmer is learning about concurrent programming and as part
of the learning wrote the pseudocode shown in Figure 3. The pro-
grammer (who didn’t take the Principles of Concurrent Programming
course!) learned from a colleague that it was a good idea to write a
state/transition diagram and he started to do so, producing the partial
diagram (represented as a table) shown in Figure 4.

int counter = 1; Lock lock = new ReentrantLock();

thread t thread u
int cnt;

1 lock.lock();

2 cnt = counter;

3 counter = cnt + 1;

4 lock.unlock();

5 // end

6counter = counter - 1;

7// end

Figure 3: Q2: Pseudocode of program counterNaive.

Figure 4: Q2: Partial state/transition diagram (table) of counterNaive pro-
gram.

5

(Part a) (8 p). Help the programmer to complete the state/transi-
tion diagram: add all the missing states and transitions so all possible
computations are included.

Answer: See Figure 5 for the complete state/transition table.

Figure 5: Q2 (Solution): Full state/transition diagram (table) of
counterNaive program.

(Part b) (10 p). Answer the questions below concerning the counterNaive
program and its state/transition diagram (table). Be concise and direct
(do not quote unnecessary theory about the topic and limit yourself to
answer the question.)

1 How many final states are there in the final state/transition ta-
ble? What can you infer about the program (in what concerns
concurrency) by only observing the final states?

2 Are there data races? If your answer is positive, give all the data
races. Can you see this in the state/transition diagram? (If so,
how?)

3 Is there any deadlock? If you answer yes, please indicate the states
with deadlocks in your state/transition table. If you answer no,
say how you identify deadlocks in a state/transition diagram (or
table).

4 Is the following assertion correct? “There is no need of using a
lock (nor any other synchronisation mechanism) in this program

6

as the threads t and u do not have the same code”. Justify your
answer.

5 Do you agree with the following statement? “If we modify the code
of thread u as shown below the program will have the following
properties: no data races, no race conditions, mutual exclusion is
guaranteed.” Justify your answer.

lock.lock();

counter = counter - 1;

lock.unlock();

// end

Answer:

1 There are 3. You can see that the program has a race condition
(there are more than one possible result as the counter can end up
with values 1 or 2).

2 There are two: One when u is in line 6 and t in line 2, the other
when u is in line 6 and t in line 3. It is not easy to see the
state/transition diagram directly unless you look at the code.

3 No, there are no deadlocks in this program. In general, deadlocks
are seen in the diagram (or table) by getting a sink state which is
not final (a non-final state without outgoing transitions).

4 No, the assertion is wrong: there is a need of a synchronisation
mechanism since they both operate on a shared variable (counter).

5 Yes, access to the counter will be exclusive and all the properties
will be guaranteed. (The final value of the counter will always be
1.)

7

Q3 (12 p). In Lecture 2 we introduced the concept of barriers as “a form of synchro-
nisation where there is a point (the barrier) in a program’s execution
that all threads in a group have to reach before any of them is allowed
to continue.”

In Lecture 8 we discussed how to implement barriers in Erlang following
the client/server architecture: an implementation in Erlang is shown
in Figure 6.

1 -module(barrier).

2 -export([init/1,wait/1]).

3
4 init(Expected) ->

5 spawn(fun () -> barrier(0, Expected, []) end).

6
7 wait(Barrier) ->

8 Ref = make_ref(),

9 Barrier ! {Arrived, self(), Ref},

10 receive {continue, Ref} -> goahead end.

11
12 barrier(Arrived, Expected, PidRefs)

13 when Arrived =:= Expected ->

14 [To ! {continue, Ref} || {To, Ref} <- PidRefs],

15 barrier(0, Expected, []);

16 barrier(Arrived, Expected, PidRefs) ->

17 receive

18 {Arrived, From, Ref} ->

19 barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

20 end.

Figure 6: Q3: A barrier implementation in Erlang.

(Part a) (6 p).

1 Is the code correct? If not explain what is wrong and correct the
code. (You don’t need to write the whole program again, simply
identify the lines with the error and give the correct implementa-
tion.)

2 The code in Figure 6 shows the server side of a full implementa-
tion. Write a a client that interacts with the barrier.

Answer:

8

1 No, it is not correct. There are two errors: in the reception of the
messages, the message should match an atom as first element and
not a variable (it should be arrived, From, Ref and not Arrived,
From, Ref; similarly in the wait function it should be arrived,

self(), Ref and not Arrived, self(), Ref)
2 According to slide 4 of Lecture 8, the clients (processes arriving
to the barrier) should execute the following function:

1 process(Barrier) ->

2 % code before barrier

3 barrier:wait(Barrier) % synchronize at barrier

4 % code after barrier

5 process(Barrier).

Other answers to be consider correct are those without the recursive
call. However, if the client is too specific (executing a fixed number of
times), the answer is considered to be wrong.

(Part b) (6 p). Below follows 3 statements about the barrier im-
plementation shown in Figure 6. Determine whether the statement is
True or False. For each case, justify your answer (for both your False
and True answers). The justification should be convincing showing you
understand the reasons for your answer.

1 The first part of the definition of the barrier function (lines 12 till
15) will only be executed (pattern matched) when the expected
number of processes has arrived to the barrier, in which case a
message will be sent to all the processes so they can pass the
barrier.

2 The implementation shown in the figure is the server implemen-
tation of a reusable barrier.

3 Line 2 of the code -export([init/1,wait/1]) is not really needed
as no process need to call the functions init and wait.

Answer:

1 True: the when condition (line 13) exactly matches that the func-
tion should be executed if the number of arrived processes is as
expected, and the list comprehension in line 14 will indeed send a
message so processes can continue.

2 True: the code only shows the server part, and it is indeed a
reusable barrier as indicated by the call in line 15 (recursive call
reinitialising the barrier).

3 False: you need to call init to initialise the barrier and the client
processes need to call wait to synchronise at the barrier.

9

Q4 (10 p). Figure 8 shows a parallel implementation of the recursive function
famousFun shown in Figure 7.

The programmer who wrote the code in Figure 8 intended to have a
parallel implementation of the recursive function famousFun only when
the parameter Fu satisfy the following properties:

• The function Fu is associative (i.e., Fu(Fu(A,B),C) = Fu(A,Fu(B,C))).

• For every element E of the list, Fu(E,A) = Fu(A,E) = E.

1 famousFun(Fu, E, []) -> E;

2 famousFun(Fu, E, [H|T]) -> Fu(H, famousFun(Fu, E, T)).

Figure 7: Q4: The function famousFun.

1 famousFunPar(Fu, E, []) -> E;

2 famousFunPar(Fu, E, [H]) -> Fu(H, E);

3 famousFunPar(Fu, E, L) ->

4 Mid = length(L) div 2,

5 {L, R} = lists:split(Mid, List),

6 Myself = self(),

7 Rp = spawn(fun() -> Myself ! {self(), famousFunPar(Fu, E, R)} end),

8 Lp = spawn(fun() -> Myself ! {self(), famousFunPar(Fu, E, L)} end),

9 Fu(receive {Lp, Lr} -> Lp end, receive {Rp, Rr} -> Rr end).

Figure 8: Q4: A parallel implementation of famousFun.

(Part a). (2 p). Give the result, and a step-by-step description, of
calling the following:

famousFun(fun (X,Y) -> X * Y end, 10, [2,3,4]).

(Code in Figure 7.)

Answer: 240 (it will traverse the list till arriving to the empty list and
then compute the product of 10 and 4, then 40 * 3, then 120 * 2).

(Part b). (3 p). What does famousFun compute? (Code in Figure 7.)

Answer: It computes the “reduce” (or “foldr”) function (as defined in
Lecture 9, slide 18)

10

(Part c). (5 p). Five programmers discuss the famousFunPar function
(code in Figure 8) and they come to different arguments on its cor-
rectness (assuming the properties for Fu as specified above). You will
find below a statement done by each one of the programmers concern-
ing the correctness of the code. Indicate which answer is correct and
justify why (In case you choose one of the options saying that the im-
plementation contains n errors, then you should identify and say what
the errors are).

1 The implementation is correct.

2 It is not correct: it has 1 error.

3 It is not correct: it has 2 errors.

4 It is not correct: it has 3 errors.

5 It is not correct: there are more than 3 errors.

Answer: There are different answers to the question. Unambiguously
there is at least one error: in line 9 (the first parameter of Fu should
give Lr and not Lp). Now, you might consider that there are 2 or 3
errors depending on whether you consider the code to be pure Erlang
or Erlang-like. Both of the following answers are correct:
- If the code is Erlang, there are more 2 errors, in line 3 and 4 L should
be List. So, there are 3 errors in total.
- If you interpret that the code is Erlang-like (without unification in
pattern matching), you might consider that the only additional error is
in line 5, where List should be L. So, there are 2 errors in total.

The correct implementation is (assuming pure Erlang code):

1 famousFunPar(_, E, []) -> E;

2 famousFunPar(Fu, E, [H]) -> Fu(H, E);

3 famousFunPar(Fu, E, List) ->

4 Mid = length(List) div 2,

5 {L, R} = lists:split(Mid, List),

6 Myself = self(),

7 Rp = spawn(fun() -> Myself ! {self(), famousFunPar(Fu, E, R)} end),

8 Lp = spawn(fun() -> Myself ! {self(), famousFunPar(Fu, E, L)} end),

9 Fu(receive {Lp, Lr} -> Lr end, receive {Rp, Rr} -> Rr end).

11

Q5 (20 p). We have seen in Lecture 10 how to implement a set data structure
using linked lists. We first showed an implementation that worked
for sequential access, and then different linked set implementations
allowing for parallel access.

Figures 9 and 10 show one such implementation: a “fine-grained lock-
ing” implementation of parallel linked sets. This implementation ex-
tends the SequentialSet<T> class seen in the course (the methods
rawAdd, rawHas and rawRemove are methods defined in the SequentialSet<T>
class to add an element to the set, check whether an element is in the
set, and remove an element from the set, respectively).

(Part a) (10 p). The implementation contains 2 errors. Find them
and propose a fix. You don’t need to rewrite the whole program:

• If the error is on a specific line just point out that (“Error in Figure
X, line Y”) and write down the correct line which is intended to
replace the faulty one.

• If the error is about some missing piece of code, just indicate in
between which lines the missing code should be inserted (“Code
missing in Figure X, in between lines Y1 and Y2”) and provide
the new code to be inserted in that place.

• If the error is about reordering two more lines, indicate which
lines are the faulty ones (“Wrong order in Figure X, in between
lines Y1 and Y2”) and provide the right code to be inserted in
their place

Answer:

Error 1: Error in Figure 9, line 20: instead of curr.unlock(); it
should be curr.lock();

Error 2: Error in Figure 10; missing code in lines 25-26 (both locks
should be released). The try-finally code of the has function should
be as follows:

1 finally {

2 pred.unlock();

3 curr.unlock();

4 }

(Part b) (10 p). Let us assume that you want to implement a queue
and use a linked list as the underlying data structure. You look at the

12

implementation of the fine-grained locking version of a parallel linked
set (the correct version of the code shown in Figures 9 and 10) for
inspiration, and you want to refactor it. In particular, you want to
implement an unbounded queue (instead of a set), and you will then
write a class Queue<T>.

Background: A queue is a FIFO (First In, First Out) data structure
with the following operations:

enqueue(Q,E): Adds element E to the queue Q. (It gives as result the
updated new queue.)

dequeue(Q): It retrieves (removes) an element of the queue. The el-
ements are popped (dequeued) in the same order in which they are
pushed (enqueued). If the queue is empty, then it is said to be an Un-
derflow condition and no element is given; otherwise it gives as result
the dequeued element.

front(Q): Get the front element from the queue Q without removing it.

rear(Q): Get the last element from the queue Q without removing it.

We say that a queue is unbounded when there is no limit on the number
of elements it might contain (you can always enqueue a new element).

In what follows you will get 10 assertions concerning the implementa-
tion of a class Queue<T> that allows for parallel access. The assertions
are both general statements about such an implementation and also
related to the possibility of reusing the code for sets (the correct ver-
sion of the code shown in Figures 9 and 10): refactoring FineSet<T>

into a new class Queue<T>.

For each assertion, you need to say whether it is correct or not. You
need to justify your answer in each case.

NOTE: An answer without a justification will not be granted full
points.

1 The enqueue method will be exactly the same as the add method
(just changing names). In other words, can you use add as it is
to implement enqueue?

2 You don’t need to use a key in the queue data structure as the
elements don’t need to be added in order according to the key.

3 The dequeue method is different from the remove among other
things because in a queue we don’t need to remove elements from
the middle of the (linked) data structure.

4 Implementing a Queue<T> class by refactoring the FineSet<T> class
is a bad idea since there are too many changes to be made (not
much can be reused).

13

5 A class Queue<T> that implements a linked queue that supports
parallel access requires the use of locks (in other words, it is im-
possible to program a linked queue that supports parallel access
without using locks).

6 As for FineSet<T>, any implementation of a class Queue<T> allow-
ing for parallel access might get an inconsistency if one thread
tries to add (enqueue) an element while another tries to remove
(dequeue) it.

7 Adding (enqueuing) an element on a parallel queue is not prob-
lematic in general if the list has four elements or more.

8 The implementation of a class Queue<T> allowing for parallel ac-
cess cannot be implemented with semaphores.

9 It is not possible to implement a class Queue<T> allowing for par-
allel access without using CAS (compare-and-set) operation.

10 The implementation of a lock-free queue data structure (a class
Queue<T> without using locks) presented in Lecture 11 is a paradigm
of how to implement a parallel queue in every object oriented lan-
guage, being unconditionally correct.

Answer:

1 False: You need to make a lot of changes as you add elements
only at one end of the queue (and not in a specific part of the
structure). (“The enqueue method will be exactly the same as
the add method (just changing names)”). ALTERNATIVE AN-
SWER: True: Though the changes are pretty trivial by wrapping
the code with something that adds the keys to enqueued elements.

2 True (“You don’t need to use a key in the queue data structure as
the elements don’t need to be added in order according to the key.”
The keys are used for efficiency reasons.)

3 True (“The dequeue method is different from the remove among
other things because in a queue we don’t need to remove elements
from the middle of the (linked) data structure.”) ADDITION: So
FineSet is more general than what we need and it would be simple
to use it for the implementation of queue.

4 True (“Implementing a Queue<T> class by refactoring the FineSet<T>
class is a bad idea since there are too many changes to be made
(not much can be reused’)”). ALTERNATIVE ANSWER: False:
you just need to wrap the methods and the implementation could
be very simple (if you want to use keys and just reimplement the
way you insert and remove elements).

14

5 False: You don’t require locks, as shown by the implementation
proposed in Lecture 11 using CAS (“A class Queue<T> that imple-
ments a linked queue that supports parallel access requires the use
of locks (in other words, it is impossible to program a linked queue
that supports parallel access without using locks)”).

6 True (“As for FineSet<T>, any implementation of a class Queue<T>
allowing for parallel access might get an inconsistency if one thread
tries to add (enqueue) an element while another tries to remove
(dequeue) it”).

7 False: Adding elements on any parallel data structure might be
problematic is there are more than one thread operating on it.
(“Adding (enqueuing) an element on a parallel queue is not prob-
lematic in general if the list has four elements or more”).

8 False: You can, as semaphores are more general than locks and
you can implement a parallel queue with locks (“The implemen-
tation of a class Queue<T> allowing for parallel access cannot be
implemented with semaphores.”)

9 False: You can, as shown in Lecture 11 (“It is not possible to
implement a class Queue<T> allowing for parallel access without
using CAS (compare-and-set) operation”).

10 False: The lock-free implementation given in Lecture 11 is not
unconditionally correct since requires garbage collection (slide 14).
You may also argue that the answer is false since the proposed
solution is not "a paradigm of how to implement a parallel queue
in every object oriented language" for two reasons: first, it might
depend on the primitive constructs the language provides to ensure
atomicity, second you may use locks to implement a parallel queue.

15

1 package sets;

2
3 public class FineSet<T> extends SequentialSet<T>

4 {

5 public FineSet() {

6 super();

7 }

8
9 @Override

10 protected Position<T> find(Node<T> start, int key) {

11 Node<T> pred, curr;

12 pred = start;

13 pred.lock();

14 curr = start.next();

15 curr.lock();

16 while (curr.key() < key) {

17 pred.unlock();

18 pred = curr;

19 curr = curr.next();

20 curr.unlock();

21 }

22 return new Position<T>(pred, curr);

23 }

24
25 @Override

26 public boolean add(T item) {

27 Node<T> node = newNode(item);

28 Node<T> pred = null, curr = null;

29 try {

30 Position<T> where = find(head, node.key());

31 pred = where.pred;

32 curr = where.curr;

33 return rawAdd(pred, curr, node);

34 } finally {

35 pred.unlock();

36 curr.unlock();

37 }

38 }

39
40 \\ code continues in Figure 5.

Figure 9: Q5: A “fine-grained locking” implementation of parallel linked sets.

16

1 @Override

2 public boolean remove(T item) {

3 int key = item.hashCode();

4 Node<T> pred = null, curr = null;

5 try {

6 Position<T> where = find(head, key);

7 pred = where.pred;

8 curr = where.curr;

9 return rawRemove(pred, curr, key);

10 } finally {

11 pred.unlock();

12 curr.unlock();

13 }

14 }

15
16 @Override

17 public boolean has(T item) {

18 int key = item.hashCode();

19 Node<T> pred = null, curr = null;

20 try {

21 Position<T> where = find(head, key);

22 pred = where.pred;

23 curr = where.curr;

24 return rawHas(curr, key);

25 } finally {

26 }

27 }

28
29 @Override

30 protected Node<T> newNode(T item) {

31 return new LockableNode<>(item);

32 }

33
34 @Override

35 protected Node<T> newNode(int key) {

36 return new LockableNode<>(key);

37 }

38 }

Figure 10: Q5: A “fine-grained locking” implementation of parallel linked
sets. [CONT.]

17

