Question 1. Consider the following program:

boolean flag := false, turn := false
p q
pl: while not flag ql: while not flag
p2: turn:=notturn | g2: if not turn
q3: flag := true
(Part a). Construct two scenarios for which the program terminates, one where turn is true at
the end, and one where 1t 1s false. (3+3p)

scenario turn = true:

*Since there is no mutual exclusion we can just do:

p2q2 (turn = false) — p2q3 (turn = false) — p1q3 (turn = true) — p1q1 (flag = true) —
(end)q1 (flag = true) — (end)(end)

scenario turn = false:
p1q2 (turn = false) — p1q3 (turn = false) — p1q1 (turn = false, flag = true) — p1(end) (flag =
true) — (end)(end) (flag = true)

(Part b). Find a weakly fair scenario for which the program does not terminate. (3p)

For this to work, we just need turn to be true whenever we execute q2. As such, we need to
first run the whole of p once (so turn = true). We can then run q once. For the rest of the time,

we need to run p twice before running q again. So p will run twice as often, but q will never
fully starve.

As a scenario:

p1q1 — p2q1 — p1q1 — p1q2 — *now we run p twice for every q* so (abbreviated): pq — pq
— qp — pq — pq — etc

Question 2. (Part a). Using synchronous channels, develop a program to sort # numbers, where 1 < n < 100.
Assume that the numbers to be sorted are all distinct, positive, non-zero integers. The n numbers
are fed into a channel ¢, and a sentinel value 0 is fed into ¢y to signal the end of input.

Build a chain of n processes F;, for 1 < i < n, and channels ¢; for 0 < i < n. Each process P,
has channel ¢;_; to its left and channel ¢; to its right. Process P; takes input from channel ¢;—
and delivers output via channel ¢; to process Pix to its right. Process Pj takes from ¢p the input
numbers to be sorted. If you need it, write a sink process to input numbers from ¢, and throw
them away.

When the program terminates, the input numbers should be stored one per process in local
memory. Let d; be the number held by process P;. Then for i and j such that i < j, it should be
that d; < d;. Write the code for the processes F; to sort the input as described. (8p)

* This kind of works like an access table implemented with a linked list...
* Since we have an index for all possible values, we can just send the values forth until they’re
in their “correct” place. This hurt me right in the algorithm...

channel of integer[O..... n] ¢ *c0 corresponds to c[0]

(process) sorter
integer index := |
integer number, sortedNumber

loop

p1 number <= cfi-1]

p2 if number > index then

p3 number => cfi]

p4 else if number =0

pbd number => cfi]

p6 break

p7 else sortedNumber := number

(Part b). Adapt your program to work with asynchronous channels. Assume the buffering
capacity of each channel is 100. (3p)

*Since the buffer will not overflow with capacity 100, we don’t need a guard on whether the
buffer is full

Probably, we don’t need to change anything, since the process will end automagically when it
receives 0 as input, and the input is still received in the same order so it should not make any
difference...

Question 3. Here is yet another algorithm to solve the critical section problem, built from atomic “if™ state-
ments (p2, g2 and p5, q5). The test of the condition following “if”, and the corresponding “then™

or “else” action, are both carried out in one step, which the other process cannot interrupt.

integer S := 0

p 9
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: ifeven(S) then S:=4 else S:=5 | q2: if S < 4 then 8:=3 else S:=7
p3: await (S#£ 1 A S#£5) q3: await (S#£ 6 A S#£7)
p4: critical section q4: critical section
p5: if S >4 then S:=S-4else skip | g5: if odd(S) then S:=58-1 else skip

Below is part of the state transition table for an abbreviated version of this program, skipping
pl, p4. q1 and g4 (the critical and non-critical sections).

A state transition table is a tabular version of a state diagram. The left hand column lists the
states (where p and g are, and the value of §). The middle column gives the next state if p next
executes a step, and the last column gives the next state if ¢ next executes a step. In many states
both p or g are free to execute the next step, and either may do so. But in some states, such as
5 below, one or other of the processes may be blocked.

There are 10 states in all.

(6p)

State = (pi, qi, Svalue) | next state if p moves | next state if g moves

L. | (p2,q2,0) (p3.92.4) (p2,4¢3.3)

2. | (p3,92,4) (p5,92,4) (p3.4¢3.7)

3. |- - -

4. |- - -

5. (p3,q93.7) (p5.93.7) no move

6. |- - -

7. | - - -

8 |- - -

9. |- - —

10. | (p2,q2,2) (p3.92. 4) (p2.¢3.3)

(Part a) Complete the state transition table.
Solution:
State = (pi, qi, Svalue) | next state if p moves | next state if g moves

. [(p2,q2,0) (p3.q2.4) (p2.¢3.3)
2. (p3.q2,4) (p5.q92. 4) (p3.93.7)
3. | (p5.q2,9) (p2, g2, 0) (p3, g3, 7)
4. (p5, g3, 7) (P2, g3, 3) no move
5. (p3.q3,7) (p5,93.7) no move
6. | (p2.933) (p3. g3, 5) (p2. g5, 3)
7. (p3, g3, 5) no move (p3, g5, 5)
8. (p3, g5, 5) e move (p3, 92, 4)
9. (p2; g5, 3) (p3; @5, 3) (p2, g2, 2)
10. | (p2, 92, 2) (p3,q2.4) (p2, 3. 3)

*In a more understandable tree-form:

*A tip is to draw such a diagram as this before filling in the transition table. Then you’ll better
understand why there are only ten states and how they’re interconnected.

(Part b) Prove from your state transition table that the program ensures mutual exclusion. {2p)

Because in the diagram, there are no instances where both p and q can be in g5, at least one
will be blocked in state 3 (p3/q3)

(Part ¢) Prove from your state transition table that the program does not deadlock (there are
await statements, so it is possible for a process to block). (2p)

Because there are no instances where both processes cannot make a move, as seen on the
transition table, and on the graph above. Therefore there can never be a deadlock.

Question 4. Refer again to the program in Question 3. This time. vou must argue from the program, not
from the state transition table (though you may seek inspiration from it!).

(Part a). Show that {p3 A g3) — (§=35Vv 8§ =7) is invariant. Hin:: Reason about what must
have happened for the program to get to (p3 A g3). {4p)

This invariant concludes that if we’re in the state p3 * q3, then that must mean S can only
take on the values 5 or 7. We can prove this by showing that there is no state p3 * q3 where
S equals anything else. we have :

det var vél inte helt som jag trodde; det var typ bara nagra killar som haller pa med ett projekt.
Men de hade helt okej planer pa hur det skulle bli, och de har redan flera andra féretag som
de finansierar det med.

(P2, @3, 3) — (p3, 93, 5)
(03, 92, 4) — (p3,q3, 7)

Because S will always be 3 from state p2,q3, it will, given p2-p3 is the next move, since 3 is
uneven, it will always turn into 5 the next round.

Because S will always be 4 whenever we are in p3,q2, and q2-q3 makes S 7 whenever it’s
greater than 3 in q2, we will only ever get this result.

- 7___‘_310!_({:
5

We can also see this in the diagram above showing the connection between all states, as we
can’t get to a state before p3q3 where the value of S is not either 4 or three with
corresponding states.

(Part b) Assume that (p3 A g3) — (5=5). Prove that if p3 A ¢5, then p cannot move until after
g executes g5. (That is, mutual exclusion holds). (Zp)

Because p3 will be blocked until S is not 5 or 1 (and it can’t be 1 ever anyway)
(Part ¢) Assume that p3 A gl — (§ =4 is invariant, and that g always loops in ql. Then prove
that p3 A gl — O pS. (4p)

*We can assume S is four to begin with, and that q is only ever doing stuff in q1. Because of
this, p can always loop through its whole sequence (since S will always be even -> not
become 5 and be blocked in q3) and thus it is always possible for p to enter p5.

*So S will only toggle between 4 in p2 and 0 in p5. Therefore it will remain even and always
be able to get to p5 again. As the dictum dictates, p3 * q1 — p5 will always at some point
become pb again, and when it isn’t in p5 it will get there again...

Question 5.

protected obj
integer

(Part a). Solve the readers and writers problem with a protected object. There are two classes
of processes that compete for access to the object: readers and writers. Readers have to exclude
writers but not other readers. Writers have to exclude both readers and other writers. Write the
code for the protected object and for the reader processes and the writer processes. (3p)

ect RW
readers :=0

boolean writing := false

operation StartWrite when not writing and readers = 0

writing := true

operation EndWrite

operati

operati

reader

loop forevs
p1 StartRead
p2 read stuff
p3 EndRead
writer

g1 StartWrite
g2 write stuff
g3 EndWrite

writing := false

on StartRead when not writing
readers := readers +1

on StopRead
readers ;= readers -1

reader

p1 StartRead()

p2 read datab
p3 EndRead()

ase

writer
q1 StartWrite()
q2 write stuff

q3 EndWrite()
(Part b). Suppose a process P is wailing on a barrier to an operation on the protected object.
How does the system know when P should be unblocked? (3p)

*A barrier on a protected object is recalculated every time an operation on the object is
completed.

*A process blocked on a barrier is assigned a spot in a FIFO queue associated with that
barrier. So the first process in the queue is unblocked when the barrier is fulfilled.

Question 6. Consider the program below, with binary semaphores as the sole communication method.

binary semaphore SA:=0, 5B :=0, SC :=1

process A process B process C
loop forever loop forever | loop forever
wait(SB); wait(SC); wait(SA)
print(”A”); print{"B”); print{”C™);
signal(SC) signal(SA) signal(SB)
(Part a). What does the program print? (3p)

*Since all processes except the one waiting for SC will be blocked initially; the one waiting on
SC will run first.
Since that is process B, we get a B.

*Process B signals SA, which process C is waiting for.
process C prints C.

*Process C signals SB, which process A is waiting for
Process A prints A

*Now process A signals SC again. Since this is exactly as it started, we will get the same
prints over and over:

BCA BCA BCA BCA BCA

(Part b). Show that when any process is printing, all three semaphores are zero. Where are the
other two processes at that time? (3p)

To show this, | will look at the program in the sequence it is run. The program begins with only
one mutex being available. When process B finishes the ‘wait’ statement, SC is decreased to
zero. Only after printing, it signals another mutex which will then become 1 until the process
waiting for that mutex aquires it. Therefore there will always be at most one available
semaphore at any time.

(Part ¢). Suppose we had declared the semaphores to be general semaphores instead, but with
the same initial values as above. Would the program printout be different? (2p)

*Since we initiate the program with only one semaphor at 1, the others at zero, we would have
to signal the same process twice for the order of the prints to change. Since we do not use
signal more than once in each process, this cannot happen.

(Part d). The given program always initialises SC to 1 and the other semaphores to zero.
Suppose we would like to initialise all the semaphores to zero, and then randomly signal one
of them to get the above program started. Write processes to run in parallel with A, B and
C, to achieve this without a random number generator. You may use as many processes and
semaphores as you like, but no other communication method. (4p)

*We want to create one process for signaling each semaphore. For them not to signal more
than one, we define a mutex where the first one to grab it gets to signal its assigned
semaphore.

binary semaphore OKsignal := 1

process StartSA
p1 wait(OKsignal)
p2 signal (SA)

process StartSB
q1 wait(OKsignal)
q2 signal(SB)

process StartSC
r1 wait(OKsignal)
r2 signal(SC)

Question 7. (Part a). Implement a bounded buffer of capacity n, where n > 1, in Linda. Assume the
products to be stored in the buffer are all alike.
Write a producer process P and a consumer process C. The producer puts products v into the
buffer, and has to wait if (and only if) the buffer is full—that is, when there are n products in the
buffer. The consumer takes products from the buffer, and has to wait if (and only if) the buffer
is empty—that is, when there are no products in it.
Your program will get most credit if the processes wait only for the conditions described above,
and if the processes P and C maintain as little internal information as possible. But you can post
as much other information as you need into the space. (7p)

*We think like this: we have two classes, producers and consumers. Somehow we have to
ensure there can only be n objects in the buffer, and we don’t want the producer/consumer
classes to hold too much information. We could implement this with a notFull/notEmpty with a
count like in the book, however then processes will have to wait which they shouldnt!

*So we implement it by assuming there are n “empty” objects in the space, which the
producer then fills’ and puts back with another pattern match which the consumer waits for.
This way the buffer will start full, but never exceed max. It will always contain the same
amount of nodes, however the amount ‘Empty’ and ‘Product’ may vary as the progam runs.

producer P

productType product

loop forevs

p1 product := produce

p2 removenote(‘Empty’)

p2 postnote(‘Product’, product)

consumer C

productType product

loop forevs

c1 removenote(‘Product’, product)
c2 consume(product)

c3 postnote(‘Empty’)

(Part b). Generalise your program to allow multiple instances of process P and multiple in-
stances of process Q. That is, to allow multiple producers (all running the same code P) and
multiple consumers (all running the same code C). (3p)

——END of QUESTION PAPER——

*The current program works for multiple processes, so it shouldn’t be a problem!

