
TDA362/DIT224 Computer Graphics
EXAM
(Same exam for both CTH- and GU students)
Friday, January 12th, 2024, 08:30 - 12:30
Examiner
Ulf Assarsson, tel. 031-772 1775

Permitted Technical Aids
None, except English dictionary

General Information
Numbers within parentheses states the maximum given credit points for the task.
Solutions shall be clear and readable. Too complex solutions can cause reductions in the
provided number of points

Questions to examiner during exam
will be possible approximately one hour after the start of the exam. If anything is
unclear – remember what has been mentioned on the lectures, in the slides and course
book and do your best.

Grades
In order to pass the course, passed exam + exercises (or exam + project) are required.
The final grade is calculated from the exam grade. The exam is graded as follows

CTH: 24p ≤ grade 3 < 36p ≤ grade 4 < 48p ≤ grade 5

GU: 24p ≤ G < 45p ≤ VG

Max 60p

Grades are announced by the LADOK system ~3 weeks after the exam

Solutions
will be announced on the course home page.

Review
Review date (granskningsdatum) is announced on the course home page.

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Question 1

a) [1p] What does the fragment shader do? (Hint: what is its input and output and
when is it executed?)
Answer: Receives interpolated values from vertex shader and computes fragment
color. E.g., refines lighting, adds textures, may modify depth.

b) [2p] Why do we want to use double buffering? Explain what can happen without it.
Answer: to avoid screen tearing. Also explain screen tearing - see lecture 1.

c) [2p] Which are the four buffers a default frame buffer typically (or often) consists
of?
Answer: Front Color Buffer, Back Color Buffer, Depth Buffer, Stencil Buffer

d) [2p] Assume that you are creating a system where you define an object's transform
from model space to world space by using a rotation matrix R for the object's
rotation around its origin, a scaling matrix S for its scale, and a translation matrix T
for its world-space positioning. For a vertex v of the object, show how you compute
the transformed vertex v'. (Use the recommended order of the matrices. A one-line
answer v'=... is enough.)
Answer: v' = (TRS) v

e) [3p] State which matrix components control 1) scaling in x-, y-, and z-direction, 2)
rotations in general, and 3) translation in the x-, y-, and z-direction?

Answer:
rotation: abcefgijk.
scaling: x: a, y: f, z: k
translation: x: m, y: n, z: o

Question 2

a) [1p] While a normal might be normalized in the vertex shader, why do we generally
need to normalize it again in the fragment shader?
Answer: As values get interpolated between the vertices from the vertex shader to
the fragment shader, the interpolated normal in not necessarily normalized.

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

b) [1p] Is an alpha channel in the color buffer needed to render transparent objects
correctly? Motivate.
Answer: No. The standard transparency-blend equation only uses the src-alpha and
not dest-alpha (see OpenGL).

c) [1p] What is the difference between supersampling and multisampling?
Answer: multisampling only runs the fragment shader once per fragment (not once
per sample-inside-each-pixel). I.e., multisampling shares computations, e.g.
executes fragment shader for only one sample but takes several depth samples.

d) [1p] Up to how many texel accesses are required for highest-quality 16x anisotropic
filtering of one texture-lookup request? And why?
Answer: 8x16 = 128.
I.e., 8 texel accesses per trilinear-filtered lookup, and up to 16 texture such trilinear
mipmap lookups along the line of anisotropy.

e) [2p] Describe how jittering works and also tell me what is the main advantage
compared to other sampling schemes.
Answer: replaces undersampling artifacts with noise. Take a random sample
position per subcell.

f) [2p] Assume you want to texture
a quad with a repeating
chessboard pattern (see the
figure). You start by setting the
texture wrap option to REPEAT.
What texture coordinates (u,v)
should you specify for each
vertex v0,v1,v2,v4 to achieve the
desired effect?
Answer: v0:(0,0), v1:(2,0), v2:
(2,4), v3:(0,4)

g) [2p] Assume that you are rendering an impostor (i.e, billboard) as a rectangular
quad. The impostor's texture represents a tree and contains lots of fully transparent
texels. How do you assure that objects that are later (for the same frame) rasterized
behind the transparent parts of the impostor will show on the screen? (Hint: use the
fragment shader.)
Answer: alpha test, fragment kill, i.e., kill fragment if alpha = 0 in fragment shader.

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Question 3

a) [2p] Assume that you have enabled backface culling. How does the hardware
determine if a triangle will be backfacing or frontfacing? Draw an explanatory
image!
Answer: The vertices v0, v1, v2, are projected onto the screen and if they appear in
anti-clockwise order (right-hand side rule), the triangle is (by default) assumed to be
front facing. Otherwise, backfacing. (The order could be reversed by specifying
CW-order.)

b) [2p] To draw transparent objects using for instance OpenGL, you typically divide
the triangles in two groups: the transparent ones and the opaque ones. 1) Which of
these two groups needs to be sorted, 2) why, 3) and in which order?
Answer: 1) the transparent triangles, 2) for correct blending, 3) back-to-front.

c) [1p] Normally, you would want to draw all geometry that is in front of the camera.
So, why is a near and far plane used for the view frustum?
Answer: Near plane is used to avoid a degenerate projection plane and get better z-
precission in the z buffer. Far plane also increases z-precision but only slightly.

d) [2p] Show how to compute the intersection (in 3D) between a ray and an infinite
cylinder centered on the z-axis.
Answer:
1) Equation for cylinder: ||x2 + y2|| = r, or simply in 2D by dropping the z
components: ||p-c||=r → [square and note that c=(0,0)] → p·p = r2.
2) Ray function: r(t)=o+td.
3) Replace p by r(t): gives (ox + tdx)2 + (oy + tdy)2 = r2, or simply in 2D:

(o+td)·(o+td) = r2.
4) Solve for t and consider that there are two solutions.
E.g.: (o·o) + 2t(o·d) + t2(d·d) = r2

(d·d)t2 + 2t(o·d) + (o·o) - r2 = 0. This is a standard scalar quadratic equation for t.
(d·d)t = -(o·d) ± sqrt((o·d)2 - (o·o)). You may assume ||d|| = 1.
5) Also, indicate that solution is the 3D point o + td.

e) [3p] Explain an efficient method for determining intersection between a ray and a
box (in 3D).
Answer: Find tmin and tmax for the intersections against each of the three slabs.
Keep max of the three tmin and min of the three tmax. If tmin < tmax, there is an
intersection. (Check for degenerate case when ray parallel to slab.)

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Question 4

a) [3p] For some scene, draw:
 • an Axis-Aligned Bounding Box hierarchy
 • an OBB hierarchy
 • an Octree or Quadtree
 • an Axis-Aligned Binary Space-Partitioning Tree
 • a grid
 • a recursive and a hierarchical grid
You can do all your drawings in 2D for simplicity and you may use different scenes
for the different hierarchies. (You don't need to show the corresponding tree
structures). The differences in the spatial divisions between all the types of data
structures must be clear from your examples, for any score.
Answer:

b) [1p] Where in the tree are the triangles stored for an Axis-aligned BSP-tree?
Answer: in the leaves.

c) [1p] Why is bubble sort efficient when we have high frame-to-frame coherency
regarding the objects to be sorted per frame?
Answer: Bubble-sort (or insertion sort) has expected runtime of resorting already
almost sorted input in O(n) instead of O(n log n), where n is number of elements.

d) [1p] How do you nicely terminate recursion in ray tracing if you do not simply want
to terminate at a maximum recursion depth?
Answer: Terminate when the ray's influence on the final pixel color is below a
certain threshold. (Send a weight with the reflection/refraction rays.)

e) [4p] Describe the structure of a typical ray tracer by using the functions main(),
trace(), shade(), and findClosestIntersection(). I.e., describe what these functions do
and which functions they call (who calls who).
Answer: main()-calls trace() for each pixel.
Trace(): returns the color of the closest intersected point. Calls
findClosestIntersection() and then calls shade() for the point.
Shade(): computes color. For each light, shoot shadow ray. If in shadow -> compute
diff/spec light. Always compute amb light. Calls trace recursively for
reflection/refraction ray.

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Question 5

a) [3p] This is the rendering equation. Explain the equation and all of its components.
For points, include an explanatory figure in your answer.

Answer: fr is the BRDF, ω' is incoming direction, n is normal at point x, Ω is
hemisphere around x and n, Li is incoming radiance, x is position on surface, ω is
outgoing direction vector.
Lo(x,ω)=Le(x, ω)+Lr(x, ω) (slightly different terminology than Kajiya). I.e.,
outgoing radiance =emitted + reflected radiance. Integral represents reflected
radiance.

b) [2p] Describe the Fresnell effect for dielectric materials and metals, respectively.
(You may draw graphs or describe with words.)
Answer: dielectrics: Wavelength independent (mostly). High transmittance/low
reflectivity for low angles. Low transmittance/high reflectivity for high angles.
Metals: Wavelength dependent and typically high reflectivity for all angles (there
can be a slight dip e.g. around 85 degrees)

c) [3p] Describe the shadow map algorithm.
Answer: 1. Render a shadow (depth) map from the light source.
2. Render image from the eye. For each generated pixel, transform/warp the x,y,z-
coordinate to light space and compare the depth with the stored depth value in the
shadow map (at the pixel position (x,y).
If greater → point is in shadow.
Else → point is not in shadow.
(Bias/offset is necessary due to disretization and precision problems.)

d) [1p] How do you modify the z-pass algorithm into the z-fail algorithm?
Answer: The problem with the eye located within shadow volumes (stencil count
gets wrong) is solved. Counting is done to infinity instead of to the eye. Invert the
depth test and stencil inc/dec. I.e., use depth test GREATER and inc for backfacing
shadow quads instead of vice versa. Also render near- and far capping shadow
volume planes.

e) [1p] Assume you have an incoming light ray l at a surface point p with the normal
n (which is normalized). Compute the reflection vector r. Draw figure!
Answer: r= l - 2(n•l)n.

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

Question 6

a) [1p] What continuity does the curve below have? Motivate. (I.e., the two curves are
exactly the same curve, but with and without arrows to depict the type of gradient
discontinuity).

Answer: G1 continuity. Different gradients, but same direction.

b) [3p] Tell which type of curve each image corresponds to. You can choose between
Bezier curve, Interpolation-curve, and Hermite-curve. To get any points, you must
also motivate your choice!

Answer: a) interpolation curve since the curve goes through the control points. b)
Hermite-curve since gradients are specified per control point. c) Bezier-curve since
two intermediate points are used to approximate the gradients in the end points.

c) [1p] Assume p=(7,5,2,9). Perform the homogenisation step on p.
Answer:

d) [1p] Manually normalize the vector x=(1,0,3).
Answer:

e) [2p] Compute how far above or below point p=(3,-1,-3) is with respect to the plane
with n=(4,2,-4)/sqrt(36) and d=-3.
Answer: Signed distance = n • p + d = 22 / sqrt(36) + -3.

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

f) [2p] There are 4 main taxonomies of hardware, based on where in the GPU-pipeline
sorting in screen space is done. Which are these four? (Names are enough. You do
not need to describe them if you don't want to.)
Answer: Sort-first: sort the triangles spatially before the geometry stage.
Sort-middle: sort the triangles spatially after the geometry stage.
Sort last fragment: sort the rasterized fragments spatially.
Sort last image: Have a frame buffer per pipeline. Merge the frame buffers after full
rendering.
(See lecture 13.)

© Ulf Assarsson, 2024
Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY

