
Databases Exam
TDA357 (Chalmers), DIT621 (University of Gothenburg)

2023-01-11 14:00-18:00

Department of Computer Science and Engineering

Examiner: Jonas Duregård.

Will visit the exam hall at least twice.

Phone: 031 772 1028

Allowed aids: One double sided A4 page of hand-written notes, the notes should be

handed in along with your solution. Write your anonymous code on the notes if you

wish, but do not write your name on it.

Results: Will be published within three weeks from exam date

Maximum points: 60

Grade limits Chalmers: 27 for 3, 38 for 4, 49 for 5.

Grade limits GU: 27 for G, 45 for VG.

Question 1: SQL Data Definition Language (10 p)

a) Create an SQL database with the following public interface (meaning tables and/or views).

You may have additional tables that are not part of the public interface.

Habitats(species, region, lowEstimate, highEstimate)

Endangered(species, globalLowEstimate)

Extinct(species)

The database contains information on animal species, their habitats and estimated

populations.

The species columns are all names of known animal species. A region is a geographical area

(like “North America” but could also be smaller areas).

A habitat indicates the presence of a species in a region. A species can have multiple habitats

in different regions. Each habitat has a low and high estimate of the number of individuals in

the area. The low estimate must be non-negative and cannot exceed the high estimate. The

high estimate must be greater than zero.

The globalLowEstimate column contains the sum of the lower estimate of all habitats of a

species. An animal is considered endangered (and should be included in Endangered) if this

number is below 1000. A species is extinct if it has no remaining habitats.

Here is an example of valid content of (the public interface of) the database:

Habitats(species, region, lowEstimate, highEstimate)

(Mountain Gorilla, DRC, 400, 600)

(Mountain Gorilla, Uganda, 400, 500)

(Moose, North America, 900000, 1100000)

Endangered(species, globalLowEstimate)

(Mountain Gorilla, 800)

Extinct(species)

(Dodo)

b) Insertions: Show all the inserts required to get the data above.

Solution 1:

-- There needs to be some way to define known species that have no

habitats. The simple and elegant way to do that is to have a master table

for all known species, and a reference in habitats (the reference is not

strictly necessary) – and then the extinct species are simply those who are

in Species but not in Habitats

-- Adding some special encoding like setting lowEstimate to NULL in

Habitats for extinct animals does not work since it does not prevent the

animal from having other habitats with positive estimates (making them both

extinct and having habitats). Extinction needs to be defined as the absence

of habitats.

-- solutions based on triggers will not give full points, unless they cover

ALL the possible cases (like “what if I modify the name of a species column

of a habitat”) they can give points

-- a)

CREATE TABLE Species(name TEXT PRIMARY KEY);

CREATE TABLE Habitats(

 species TEXT REFERENCES Species,

 area TEXT,

 lowEstimate INTEGER NOT NULL,

 highEstimate INTEGER NOT NULL,

 CHECK (lowEstimate >= 0

 AND lowEstimate <= highEstimate

 AND highEstimate > 0),

 PRIMARY KEY(species, area)

);

CREATE VIEW Endangered AS

SELECT species, SUM(lowEstimate)

FROM Habitats

GROUP BY species

HAVING SUM(lowEstimate) <= 1000;

CREATE VIEW Extinct AS

(SELECT name AS species FROM Species)

EXCEPT

(SELECT species FROM Habitats);

-- b)

INSERT INTO Species VALUES('Dodo');

INSERT INTO Species VALUES('Mountain Gorilla');

INSERT INTO Species VALUES('Moose');

INSERT INTO Habitats VALUES('Mountain Gorilla', 'DRC', 400, 600);

INSERT INTO Habitats VALUES('Mountain Gorilla', 'Uganda', 400, 500);

INSERT INTO Habitats VALUES('Moose', 'North America', 900000, 1100000);

Question 2: SQL queries (10 p)

Consider this little database of scientific papers and citations between them:

Papers(title, author, year, journal)

Citations(title, author, citedTitle, citedAuthor)

 (title, author) -> Papers.(title, author)

 (citedTitle, citedAuthor) -> Papers.(title, author)

Each paper has a title and (for simplicity) a single author. They also have a year of

publication and the name of the journal in which they were published.

For Citations, a row (p, x, q, y) means that the paper p (written by x) contains a citation of

paper q (written by y).

a) Write an SQL query for finding all pairs of authors who have cited each other. That is: all

pairs of distinct authors (a1, a2) such that a1 has written at least one paper citing a paper

written by a2, and vice versa. No pair should appear more than once in the result regardless

of internal order, so if (a1, a2) is included then (a2, a1) must be excluded.

b) One way to estimate of the impact of a journal is to track how many papers cite the

papers it publishes, and how this number changes over time. Write an SQL query that: For

each journal, counts the yearly number of papers that cite at least one paper published in the

journal. The result should have three columns, for journal, year (when the citing papers were

written) and number of citing papers.

Example: A row like (Nature, 1998, 321) in the result would mean that the database

contains 321 different papers written in 1998 that each cite at least one article published in

Nature.

Note: We are counting number of citing papers, not the number of citations - if a single

paper cites multiple papers from the same journal, it should only be counted once!

Note: Years in which the journal was not cited at all do not need to be included.

Solution 2:

-- a)

SELECT DISTINCT author, citedAuthor

FROM Citations

WHERE

 author < citedAuthor AND (author, citedAuthor)

 IN (SELECT citedAuthor, author FROM Citations);

-- alternative solution:

(SELECT author, citedAuthor

FROM Citations WHERE author < citedAuthor)

INTERSECT

(SELECT citedAuthor, author FROM Citations);

-- You can also make a solution based on a self-join on Citations:

SELECT DISTINCT C1.author, C2.author

FROM Citations AS C1 JOIN Citations AS C2

 ON C1.author=C2.citedAuthor AND C2.author=C1.citedAuthor

WHERE C1.author < C2.author;

-- b)

-- CitationsPlus has, for each citing paper:

-- * The author and title of the citing paper

-- * the publication year of the citing paper

-- * the journal being cited

-- Having the author and title of (only) the citing paper makes sure

DISTINCT does the right thing.

-- (e.g. P3 is only counted as citing J1 once)

WITH CitationsPlus AS

 (SELECT DISTINCT P1.author, P1.title, P1.year, P2.journal

 FROM Citations AS C

 NATURAL JOIN Papers P1

 JOIN Papers AS P2 ON citedTitle=P2.title AND

citedAuthor=P2.author

)

SELECT journal, year, COUNT(*) AS citations

FROM CitationsPlus

GROUP BY journal, year;

Question 3: Relational Algebra (10 p)

For the same database as in Question 2 (repeated here as a reminder):

Papers(title, author, year, journal)

Citations(title, author, citedTitle, citedAuthor)

 (title, author) -> Papers.(title, author)

 (citedTitle, citedAuthor) -> Papers.(title, author)

a) Write a relational algebra expression that finds how many times each author has been

cited, excluding self-citations (a self-citation is when an author cites a paper they have

written themselves). You do not need to include authors that have never been cited by other

authors. The result should contain authors and number of citations.

b) Write a relational algebra expression that finds all authors that have published at least

ten papers but never been cited by another author (self-citations do not count).

Solution 3:

nonSelf = σcitedAuthor≠author(Citations)

manyPapers = πauthor(σpapers >= 10(�author, count(*)->papers(Papers)

a)

�citedAuthor, count(*)->citations(nonSelf)

b)

manyPapers – πcitedAuthor(nonSelf)

Question 4: ER-modelling (10p)

a) (6 p) A web service for creating and answering quizzes has a large dataset of shared

questions (so the same question can appear in multiple different quizzes).

• Each quiz has a name and a collection of questions. Two quizzes cannot have the

same name. The questions appear in a specified order (so each question appearing in a

quiz has a position).

• Questions have a question text and an answer text (for the correct answer). Neither of

these are unique between questions.

• Each question can have a set of tags (typically for subjects like “2022” or “Lord of The

Rings”). The tags are selected from a predefined set of tags.

• Questions can be open (the user types in an answer) or have alternatives. Alternative

questions are distinguished by having a (non-empty) set of incorrect alternatives

connected to them. There is no set of predefined alternatives (so when an alternative

is not applied to any question, it should no longer exist).

• The database has users, each user has an email address. Each question is written by a

user, and each quiz is owned by a user.

Hint: There may be entities that have no natural keys to them, and you will probably need

to introduce some synthetic keys (like id-numbers).

b) (4 p) Draw a diagram that translates into this relational schema (using the standard rules

for translating ER-diagrams, choosing names during the translation as needed):

R(a, b)

S(c, d, e)

 e → R.a

T(f, g, h, i)

 f → R.a

 (g,h) → S.(c,d)

Solution 4:

a)

b) For T, you could use an ISA and a many-to-exactly-one for an equivalent diagram (or a

weak entity that is equivalent to an ISA). E can be named anything.

QuizQuestion In

position

question

answer

id name

Tag

Tagged

tag

Alternative

Of

text

User

email

OwnerWriter

Sd

c

R

a

E

b

T

i

Question 5: Dependencies and normal forms (10p)

You are designing a database for an online computer games store, where users can own games

and have store credits etc.

R(credit, developer, game, location, revenue, user)

• credit: Store credit of a user.

• developer: The name of a game developer.

• game: The name of a computer game. Different games always have different names.

• location: The location (country) in which a developer pays taxes.

• revenue: The estimated yearly revenue of a developer.

• user: A player who owns a set of computer games.

Example contents (should clarify any ambiguities):

credit developer game location revenue user

100 Dev1 G1 L1 1000 U1

200 Dev1 G1 L1 1000 U2

100 Dev1 G2 L1 1000 U1

100 Dev2 G2 L2 2000 U1

100 Dev3 G3 L1 2000 U3

a) (3 p) Normalize R to BCNF, showing all decomposition step. For each decomposition,

indicate clearly which violation you use, and which relation is decomposed.

b) (2 p) Further normalize your result from a) to 4NF. Again, indicate clearly which MVD

you are using in each step.

c) (2 p) Draw tables representing the example data above in your normalized schema (in

4NF).

d) (3 p) This question is unrelated to previous questions. Consider this set of functional

dependencies (seven in total!):

F={

 A→B,

 B C → D,

 A C → D B,

 C → E,

 E → C D

}

Find a minimal basis F- (also known as a minimal cover) for this set. As a reminder, this

means a subset of F where no FD in F- can be deduced from other FDs in F-.

Solution 5:

a)

Split R on user -> credit

R1(user, credit)

R2(developer, game, location, revenue, user)

Split R2 on developer -> revenue location

R21(developer, revenue, location)

R22(developer, game, user)

R1, R21, R22 are all BCNF.

b)

Split R22 on game ->> user (or game ->> developer)

R221(game, developer)

R222(game, user)

c)

credit user

100 U1

200 U2

100 U3

d) Here is one solution (possibly the only correct one). E -> C, E ->D could be merged.

F- ={

 A -> B,

 C -> E,

 E -> C,

 E -> D

}

developer location revenue

Dev1 L1 1000

Dev2 L2 2000

Dev3 L1 2000

developer game

Dev1 G1

Dev1 G2

Dev2 G2

Dev3 G3

game user

G1 U1

G1 U2

G2 U1

G3 U3

Question 6: Semi-structured data and other topics (10p)

A JSON Schema (see next page) describes reference lists of academic literature. It defines

two types of references: Books and websites. A third type of reference (thesis) is planned but

not added yet.

a) (3p) Write an example JSON-document that validates against the schema and contains a

book and a website. Names and such do not need to be realistic.

b) (4p) Write a JSON Path for finding the url of all websites accessed before February 2023.

c) (3 p) Write a JSON schema to replace false for the thesis part of the schema, enabling

citations of thesis with (at least) author, title, and year of publication.

For full points, you should allow additional attributes (in addition to author, title, and year)

as much as practically possible (remaining compatible with the rest of the schema).

You are not allowed to modify other parts of the schema.

{"type":"array",

 "description":"A reference list",

 "items":{"oneOf":[{"$ref":"#/definitions/book"},

 {"$ref":"#/definitions/site"},

 {"$ref":"#/definitions/thesis"}]},

 "definitions":{

 "book":{

 "type":"object",

 "properties":{

 "author":{"type":"string"},

 "title":{"type":"string"},

 "publisher":{"type":"string"},

 "year":{"type":"integer"}

 },

 "required":["author","title","publisher","year"]

 },

 "site":{

 "type":"object",

 "properties":{

 "author":{"type":"string"},

 "title":{"type":"string"},

 "url":{"type":"string"},

 "accessed":{

 "type":"object",

 "properties":{

 "year":{"type":"integer"},

 "month":{"enum":["Jan","Feb","Mar","Apr","May","Jun",

 "Jul","Aug","Sep","Oct","Nov","Dec"]},

 "day":{"type":"integer"}

 },

 "required":["year","month","day"]

 }

 },

 "required":["author","title","url","accessed"]

 },

 "thesis":false

 }

}

Solution 6:

a)

[{"author":"x","title":"x","location":"x","isbn":"x","year":1999}

,{"author":"x","title":"x","website":"x","url":"x",

 "accessed":{"year":2022, "month":"Jan","day":11}}

]

b)

$[*]?(@.accessed.year < 2023 ||

 @.accessed.year==2023 && @.accessed.month=='Jan').url

c) Here is one way to make a schema that prevents overlap with the other two types, but

still allows additional attributes:

{

 "type":"object",

 "properties":{

 "author":{"type":"string"},

 "title":{"type":"string"},

 "publisher":false,

 "accessed":false,

 "year":{"type":"integer"}

 },

 "required":["author","title","year"]

}

