
Databases Exam
TDA357 (Chalmers), DIT621 (University of Gothenburg)

2020-08-27 14:00-18:00

Department of Computer Science and Engineering

Examiner: Jonas Duregård, contact via Zoom supervision. In case of urgent technical issues,

contact by phone: 031 772 1028

Results: Will be published within three weeks from exam date

Maximum points: 60

Grade limits Chalmers: 24 for 3, 36 for 4, 48 for 5.

Grade limits GU: 24 for G, 42 for VG.

Instructions and submission: https://chalmers.instructure.com/courses/12048

If technical issues prevent you from accessing Canvas, send your solution to

jonas.duregard@chalmers.se no later than 18:30 using this exact title:

TDA357 DIT621 exam submission

Question 1: ER-design (11 points)

a) Make an ER-diagram for the following domain:

A company is making an online fantasy role playing game. Part of the game includes

collecting items (like weapons and armor). To easily create lots of unique-sounding names

with minimal effort, the company decided that all items will be named on the form

“<prefix> <base item> of <suffix>”. For example “shining sword of the badger” (with the

prefix “shining” base item “sword” and suffix “the badger”) or “cursed dagger of SQL-

injection” etc.

Each prefix or suffix applies a number of magical effects to the wearer. These effects all

modify the attributes of the player wearing them (such as strength or intelligence). Example

of an effect could be “shining” giving +3 charisma. The effects can also be attribute

multipliers, e.g. “cursed” could give -10% vitality and -5 strength, and a prefix can have both

kinds of modifiers for the same attribute. Prefixes can have any number of effects, suffixes can

have at most one.

The company has these specific requirements in addition to the description above:

• There needs to be a table called Items where each row represents an item added to

the game.

• There should be a fixed set of player attributes available, you cannot invent a new

attribute by just adding an item/prefix/suffix/effect. There should also be a fixed set

of base items.

• It should be possible to compute the effect of an item on a player’s attributes by

querying the database and doing some simple math on the result.

• There cannot be multiple items with the same name.

• Each prefix/suffix always has the same effects on attributes, regardless of which item

it is applied to.

It may be difficult to enforce all these requirements in an ER-design. If so, do as close

approximation as you can, and clearly specify what parts are not possible.

Note: you only have to do the item database - not players, inventories etc.!

b) Translate your diagram from a) into a relational schema. You can get full points for this

even if your solution from a) is not correct, but if your solution to a) is extremely over-

simplified you will not get full points even if translating it correctly.

If your ER-design had any known flaws, can the schema be patched to fix them? Indicate

clearly if you make any such changes.

c) Show the contents of the relations/tables in b) needed for an item called “wonderful armor

of the rainbow”, with “wonderful” giving +3 wisdom and an additional +3% wisdom, and

“the rainbow” giving +10 charisma.

Question 2: Functional Dependencies, Normal Forms (8 points)

Consider a relation R(A, B, C, D) with the following Functional Dependencies

A -> B

B -> A

C -> D

a) Construct a table with exactly these functional dependencies (including any derived ones)

and no other functional dependencies. You can use small integers as the data, e.g. your

solution could look like this:

A B C D

1 1 2 2

1 1 2 3

This solution would however be incorrect for multiple reasons: It has lots of additional

dependencies including A->C (but not A->D), and it violates C->D.

Hint: It is possible to construct a correct solution with four rows (but it is OK to use more).

b) List 2 different minimal keys (key candidates) of this relation (each key is a set of

attributes, write each set in alphabetical order on its own line)

Question 3: SQL Queries (10 points)

Below is the schema for a database of assignment submissions, somewhat similar to

submissions done in Canvas for this exam and for lab assignments.

Assignment(course, name, description, deadline)

Submission(idnr, student, course, assignment, stime)

 (course,assignment) -> Assignment.(course, name)

SubmittedFile(submission, filename, filesize, contents)

 submission -> Submission.idnr

Assignments have names that are unique within each course, a text description and a

deadline (specified as a timestamp).

For each assignment there is a number of submissions, each done by a student (the same

student may make multiple submission for each assignment). Each submission is given a

unique id number (idnr). The attribute stime is the time of submission as a timestamp.

For each submission there is a number of submitted files, each has a name, a size and a file

content.

Example contents of Assignment, Submission and SubmittedFile (some data left out, and

timestamps are symbolic and do not correspond to realistic dates/times):

course name description deadline

TDA357 Lab 1 … 2500

TDA357 Lab 2 … 6000

TDA144 Lab 2 … 2000

a) Compute the combined file size of all submissions for each student that has made at least

one submission. The result for the data above should be (student, total size):

(s1, 1700) (s2, 1400) (s3, 0)

b) Find all submissions to Lab 1 of course TDA357 that are missing one or both files

'tables.sql' and 'views.sql'.

idnr student course Assignment stime

0 s1 TDA357 Lab 1 1000

1 s2 TDA357 Lab 2 2000

2 s1 TDA357 Lab 1 3000

3 s3 TDA144 Lab 2 1000

submission filename filesize contents

1 tables.sql 1300 …

1 comment.txt 100 …

2 views.sql 800 …

2 tables.sql 900 …

Question 4: Relational Algebra (9 points)

Write a relational algebra expression for solving these tasks:

a) Find all submissions done after the deadline had passed for its assignment.

b) If everything works as intended, a submission with higher idnr should also have later (or

equal) stime. Find all pairs of assignment (their idnr) that violate this property. For the data

above, the pairs (1,3) and (2,3) violate this property.

c) Construct a copy of Submissions, but containing only the latest submission for students

that have made multiple submissions for the same assignment. You do not need to include

stime in the result. You may assume the latest submission will have the highest idnr. For the

data above, it should be identical to submission except the submission with idnr=0 is missing

(and there is no stime column).

Hints: Do not use relational algebra expressions in conditions!

Question 5: Views, constraints and triggers (12 points)

Database integrity can be improved by several techniques:

• Views: virtual tables that show useful information that would create redundancy if

stored in the actual tables

• SQL Constraints: conditions on attribute values and tuples

• Triggers (and assertions): automated checks and actions performed on entire tables

As a general rule, these methods should be applied in the above order: if a view or constraint

can adequately do the job, do not use a trigger.

The task in this question is to implement a small database. You may use any SQL features

we have covered in the course. While the description below gives requirements for what

should be in the database, you are allowed to divide it across as many tables and views as

you need to. Points will be deducted if your solution uses a trigger where a constraint or view

would suffice, or if your solution is drastically over-complicated. For triggers, it is enough to

specify which actions and tables it applies to, and PL/(pg)SQL pseudo-code of the function it

executes.

The database will be mostly the same as in Question 3 and 4:

Assignment(course, name, description, deadline)

Submission(idnr, student, course, assignment, stime)

 (course,assignment) -> Assignment.(course, name)

SubmittedFile(submission, filename, filesize, contents)

 submission -> Submission.idnr

Additionally, you should add a table Registered that keeps track of which courses each

student is registered for:

Registered(student, course)

You should also enforce the following additional constraints (write a letter in the margin of

your code where you implement each constraint, the same letter may appear multiple times):

a) The newer a submission is the higher its idnr.

b) Students can only submit solutions to assignments in courses they are registered for.

c) filesize always reflects the length of content (computable by length(content) in

Postgres). A database user should not need to specify filesize when adding a new file

to a submission.

d) When a submission is deleted, its files should also be deleted automatically.

e) When all files of a submission are deleted, delete the submission itself as well.

f) A student can not have two submissions for the same assignment with exactly the

same time.

Question 6: Semi-structured data and other topics (10 p)

Below is a kind of phylogenetic tree (specifically a chronogram), a “tree of life” that shows the

evolution of animals into various species. The branching points (splits) in the tree show when

two species diverged from a common ancestor.

Your job is to represent the data needed to construct such a diagram in a suitable JSON

format. A few things to note:

• The lengths of the horizontal bars (or equivalently: the horizontal positions of the

splits) are relevant. In this example Blue sharks and Caribbean reef sharks diverged

earlier than Bull sharks and Blacknose sharks did.

• These particular diagrams only show now living species by name, so the bars leading

up to a name always extend all the way to 0.

• The vertical size and vertical position of all bars and names are automatically decided

and do not need to be stored in the data set you are creating.

• The time scale shown at the bottom should be possible to automatically decide based

on the data. It should not need to be specified explicitly in the JSON document.

Encode the data for the image above as a JSON object. You do not have to write a JSON

schema, but the format of your data should be clear and consistent so one can easily see how

to create a JSON document for a different diagram.

Also write a short text describing the choices you made for your format and any assumptions

you make about limitations etc.

For the purpose of creating the JSON document, let’s say that the splits in the diagram are

at 24, 20, 17 and 10 million years ago.

