
Database Exam Solutions
22 March 2019

Aarne Ranta
CSE, Chalmers & GU

Exam questions

http://www.cse.chalmers.se/~aarne/db-course/db_2019_with_cheatsheet.pdf

1. ER modelling
Artist(_name)

Person(_name,birthdate)
 name -> Artist.name

Band(_name,startdate)
 name -> Artist.name

PlaysIn(_personName,_bandName)
 personName -> Person.name
 bandName -> Band.name

Album(_title,year,_artistName)
 artistName -> Artist.name

Song(_title,year,_artistName)
 artistName -> Artist.name

IsIn(_songTitle,_songArtistName,_albumTitle,_albumArtistName)
 (songTitle,songArtistName) -> Song.(title,artistName)
 (albumTitle,albumArtistName) -> Album.(title,artistName)

2. Functional dependencies
2.1
Attributes: A B C D E
Functional dependencies:
A -> B
C -> D
E -> A

Keys:
C E

All attributes belong to its closure:
A, because of E->A
B, because of E->A->B
C, because of C->C
D, because of C->D
E, because of E->E

BCNF violations (the first 3):
A -> B, C -> D, E -> A

2.2
BCNF decomposition on A -> B:

1. Attributes: A B, Keys: A
No violations

2. Attributes: E A C D, Keys: E C
Violations: E -> A

2.1 Attributes: E A, Keys: A
No violations

2.2 Attributes: E C D, Keys: EC
Violations: C -> D

2.2.1. Attributes: C D, Keys: C
No violations

2.2.2. Attributes: C E, Keys: C E
No violations

2.3
Example:

It helps to order the FDs in this way:

 E -> A -> B C -> D

These are like two independent relations. But it
can make sense to link them together. Here is an
example:

 Country -> Currency -> Value
 Language -> LanguageFamily

Assuming
- Country determines currency, which

determines value
- Language belongs to a definite family
- A country can have several languages

from different families

3. SQL queries
3.1

SELECT title, year
FROM Albums
WHERE artist = 'Metallica' AND year >= 2000 ;

3.2

SELECT SUM(length)
FROM Songs,Tracks
WHERE album = 'Vespertine' AND artist = 'Björk' AND title = song ;

3.3

SELECT title
FROM Albums
WHERE artist IN (SELECT name FROM Persons) ;

3.4

SELECT name
FROM Members, Persons
WHERE birthdate = (
 SELECT MIN(birthdate)
 FROM Members,Persons
 WHERE band='Metallica' AND person = name
) AND band='Metallica' AND person = name ;

-- alternative:
WITH MetallicaMembers AS (
 SELECT person, birthdate
 FROM Persons, PlaysIn
 WHERE band='Metallica' AND person = name
)
SELECT person
FROM MetallicaMembers
WHERE birthdate = (
 SELECT MIN(birthdate)
 FROM MetallicaMembers)

4. Algebra and theory
SELECT * FROM Albums NATURAL JOIN Songs

 title | artist | year | length

-------------------+-----------+------+--------

 Master of Puppets | Metallica | 1986 | 513

SELECT * FROM Albums FULL OUTER JOIN Songs

 USING (title,artist)

 title | artist | year | year | length

-------------------+-----------+------+------+--------

 Cocoon | Björk | | 2001 | 264

 Hidden Place | Björk | | 2001 | 264

 Master of Puppets | Metallica | 1986 | 1986 | 513

 Vespertine | Björk | 2001 | |

Does this make sense? Not really. A join makes sense if the two tables
are about the same objects, identified by the joining attributes, and just
give different informations about these objects. But here, albums and
songs are different objects, which just sometimes happen to have the
same title.

5. Constraints and triggers
1. Every song in the playlist exists.
Yes: FOREIGN KEY (song,artist) REFERENCES …

2. All playlists of one and the same owner have different names.
No: the following would be OK
PL001, hottest hits, Joe
PL002, hottest hits, Joe

3. All positions in a given playlist are unique.
Yes: PRIMARY KEY (playlist,position)

4. The positions can be listed in order 1,2,3,... with no numbers missing
No: the following would be OK: 2,7,11,...

CREATE VIEW PlaylistM123 AS (

 SELECT position, song, Songs.artist, length

 FROM PlaylistSongs, Songs

 WHERE playlist = 'M123'

 AND song = Songs.title

 AND PlaylistSongs.artist = Songs.artist

 ORDER BY position

) ;

CREATE FUNCTION insertPlaylistFunction() RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.position > (SELECT MAX(position) FROM PlaylistSongs WHERE
playlist = 'M123'))
 THEN INSERT INTO PlaylistSongs VALUES
 ('M123',NEW.song,NEW.artist,
 1+(SELECT MAX(position) FROM PlaylistSongs WHERE playlist = 'M123')) ;
 ELSE
 UPDATE PlaylistSongs
 SET position = position + 1
 WHERE position >= NEW.position AND playlist = 'M123' ;
 INSERT INTO PlaylistSongs VALUES ('M123',NEW.song,NEW.artist,
NEW.position) ;
 END IF ;
 RETURN NULL ;
END
$$ LANGUAGE 'plpgsql' ;

CREATE TRIGGER insertPlaylist
 INSTEAD OF INSERT ON PlaylistM123
 FOR EACH ROW
 EXECUTE PROCEDURE insertPlaylistFunction() ;

6. JSON
6.1

A table listing all members of a band on a row would violate
the first normal form: that all posts in a tuple have atomic
values. Or the even more fundamental principle that all tuples
have the same length.

6.2
{ "type" : "array",

 "items":{

 "type" :"object",

 "properties": {

 "band": {"type": "string"},

 "members": {

 "type": "array",

 "items": {

 "type":"object",

 "properties": {

 "name" : {"type":"string"},

 "year" : {"type": "integer"}

 }}}}}}

6.3
[

 {"band": "The Beatles",

 "members": [

 {"name": "John Lennon", "year": 1960},

 {"name": "Paul McCartney", "year": 1960},

 {"name": "Ringo Starr", "year": 1962},

 {"name": "George Harrison", "year": 1960}

]

 },

 {"band": "Metallica",

 "members": [

 {"name": "James Hetfield", "year": 1981},

 {"name": "Lars Ulrich", "year": 1981},

 {"name": "Kirk Hammett", "year": 1983},

 {"name": "Dave Mustaine", "year": 1982},

 {"name": "Cliff Burton", "year": 1982}

]

 }

]

6.4

$.[*].[?(@.band=="The Beatles")].members[?(@.year>1960)]

