
Databases Re-exam

TDA357 (Chalmers), DIT620 (University of Gothenburg)

30 August 2018 at 14:00 in SB Multisal

Department of Computer Science and Engineering

Examiner: Aarne Ranta tel. 031 772 10 82 email aarne at chalmers.se

Results: Will be published by 20 September.

Exam review: upon agreement with the examiner

Grades: Chalmers: 24 for 3, 36 for 4, 48 for 5. GU: 24 for G, 42 for VG.

Help material: One “cheat sheet”, which is an A4 sheet with hand-written notes. You may write on both sides of that
sheet. If you bring a sheet, it must be handed in with your answers to the exam questions. One English language
dictionary is also allowed.

Specific instructions: You can answer in English, Danish, Dutch, Finnish, French, German, Italian, Norwegian, Span-
ish, or Swedish (in this exam; next time it can be another set of languages ;-) Begin the answer to each question
(numbers 1 to 6) on a new page. The a,b,c,... parts with the same number can be on the same page. If you need
many pages for one question, number the pages as well, for instance, “Question 3 p. 2”. Write the question number
on every page.

Write clearly: unreadable = wrong! Fewer points are given for unnecessarily complicated solutions. Indicate clearly
if you make any assumptions that are not given in the question. In particular: in SQL questions, use standard SQL
or PostgreSQL. If you use any other variant (such as Oracle or MySQL), say this; but full points are not guaranteed
since this may change the nature of the question.

1

.

2

1. Modelling (12p)

1a (6p)

The domain to model is the staff working at a university department, such as CSE at Chalmers and GU. You should
build an ER model covering the following concepts.
• The department has a number of divisions, where each division has a name and an acronym.
• Both the name and the acronym uniquely identify a division, but the database uses the acronym as a primary

key.
• An employee has a name, an id number, and a salary.
• The id number uniquely identifies an employee.
• Every employee belongs to exactly one division.
• Every employee has one or more titles. Thus, for instance, one and the same employee can be both a manager

and a professor.
• Some divisions are academic divisions, which are responsible for a set of courses.
• A course has a uniquely identifying name, as well as a set of teachers, who are employees at the division

responsible for the course.

1b (4p)

Also write a database schema, in the form of SQL CREATE TABLE statements, corresponding to the description in 1a.
The schema will be graded independently of your ER model. You can get started by deriving the schema from your
ER model, but notice that a schema can often express constraints that the ER model cannot. Therefore. don’t panic
if you cannot express all the constraints in your ER model.

1c (2p)

List the constraints that are expressed by your schema (1b) but not by your ER model (1a). If there are no such
constraints, just say this: it is the correct answer if it is true and if your schema and ER model are both correct.

3

2. Dependencies (8p)

The following table shows a few courses with their levels, teachers, and examination forms:

course | level | teacher | examination

--

Databases | bachelor | Johnson | exam

Databases | bachelor | Johnson | lab

Databases | master | Johnson | exam

Databases | master | Johnson | lab

Compilers | master | Paulson | lab

Calculus | bachelor | Ericson | exam

Calculus | bachelor | Ericson | lab

2a (4p)

Looking at the data alone, and applying the definitions of dependencies, list the functional and multivalued depen-
dencies that hold for the data in the table. Based on this analysis, list the possible keys of the table.

2b (4p)

Convert the table to BCNF and to 4NF. Show both the resulting schemas and the resulting tables.

4

3. SQL queries (12p)

Assume tables with the following schemas for a university department:

Divisions (acronym, budget)

Employees (id, name, division, title, salary)

division -> Divisions(acronym)

This schema is related to the one in Question 1, but not exactly the same. The budget of a division is the total amount
of money usable for salaries. Primary key information left out as irrelevant for this question.

3a (3p)

Write an SQL query that lists the names of all professors and lecturers from CS and DS divisions, together with their
titles, divisions, and salaries (per year, in Bitcoin, as this is a modern university). The result should look as follows:

name | title | division | salary

Carlson | professor | DS | 15

Johnson | professor | CS | 14

Johnson | lecturer | DS | 12

Paulson | lecturer | DS | 16

3b (4p)

Create an SQL view Genders, which lists the names and id numbers of all employees together with their gender. The
gender is computed from the id number following the Swedish system: if the second-last digit is even, the gender is F;
if odd, the gender is M. The result should look as follows:

name | id | gender

Carlson | 660606-6666 | F

Johnson | 770707-7777 | M

Johnson | 990909-9999 | M

Paulson | 550505-5555 | M

3c (5p)

Write an SQL query that returns the average salaries of different combinations of job titles and genders. The result
should look as follows:

title | gender | salary

professor | M | 14

professor | F | 15

lecturer | M | 14

Hint: you can use the Genders view in your query.

5

4. Relational algebra and semantics (8p)

4a (5p)

Write a relational algebra query that does the same job as the query in Question 3c. Now you cannot assume the
Genders view to be given: if you need it, you have to include its relational algebra expression in your answer.

4b (3p)

Trace the execution of the query in 4a by showing the table corresponding to every subexpression that stands for a
relation. The original tables are:

Divisions:

acronym | budget

CS | 300

DS | 500

Employees:

id | name | title | division | salary

660606-6666 | Carlson | professor | DS | 15

770707-7777 | Johnson | professor | CS | 14

990909-9999 | Johnson | lecturer | DS | 12

550505-5555 | Paulson | lecturer | DS | 16

6

5. Constraints and triggers (12p)

5a (5p)

Let us add to the description of Question 1 the concept of a manager of a division, who is an employee (at that divi-
sion). Divisions and employees are then defined as the following tables (where we have omitted irrelevant attributes):

CREATE TABLE Divisions (

acronym TEXT PRIMARY KEY,

manager TEXT REFERENCES Employees(ident)

) ;

CREATE TABLE Employees (

ident TEXT PRIMARY KEY,

division TEXT REFERENCES Divisions(acronym)

) ;

INSERT INTO Divisions VALUES (’CS’,’770707-7777’) ;

INSERT INTO Employees VALUES (’770707-7777’,’CS’) ;

Unfortunately, however, these statements are not valid in SQL, because they refer to each other. We cannot create
the table Divisions before Employees, but we cannot create Employees before Divisions either. But fortunately, there
is a way out. Your task is to write a sequence of SQL statements that results in the two tables being created, with
the following contents:

SELECT * FROM Divisions ;

acronym | manager

---------+-------------

CS | 770707-7777

SELECT * FROM Employees ;

ident | division

-------------+----------

770707-7777 | CS

5b (7p)

Assume tables similar to Question 3 but with some irrelevant details left out:

Divisions (acronym, budget)

Employees (id, division, salary)

division -> Divisions(acronym)

The budget of a division is the total amount of money usable for salaries.
When a new employee is taken to a division, the following conditions must hold:
• The sum of all salaries of the division’s employees must not exceed the budget of the division.
• The new employee’s salary must not be less than the average salary of the old employees of the division.

Your task is to write a trigger that guarantees that these conditions are obeyed when a new person is employed.
Procedurally,
• If the proposed salary leads to the budget being exceeded, try the largest possible salary.
• If this salary ends up below the average, reject the new employment.

7

6. XML (8p)

6a. Design, 4p

Write a DTD (Document Type Declaration) modelling a department as described in Question 1. Thus
• a department is a set of divisions
• each division has a name, an acronym, and a set of employees
• each employee has a name, an id number, and a set of titles
• a division can also have a list of courses
• a course has a name and a list of teachers

Try to use ID and IDREF types to guarantee the integrity of the database.

6b. Data representation, 4p

Write an XML element that represents the department described in Question 3 and is valid with respect to your DTD:
• the divisions are CS and DS
• CS has professor Johnson with salary 14
• DS has professor Carlson (salary 15) and lecturers Johnson (12) and Paulson (16)
• for ID numbers, see Question 3b
• Johnson is the manager of CS and Carlson of DS
• DS has the course Databases taught by Paulson and Johnson

Full points for this question require not only validity with respect to your DTD, but also that your DTD is reasonable

8

Databases in a Nutshell (“Standard Cheatsheet”)

E-R diagrams and database schemas

Functional dependencies

Definition (tuple, attribute, value). A tuple has the form

{A1 = v1, . . . , An = vn}

where A1, . . . , An are attributes and v1, . . . , vn are their values.
Definition (signature, relation). The signature of a tuple, S, is the set of all its attributes, {A1, . . . , An}. A relation
R of signature S is a set of tuples with signature S. But we will sometimes also say ”relation” when we mean the
signature itself.
Definition (projection). If t is a tuple of a relation with signature S, the projection t.Ai computes to the value vi.
Definition (simultaneous projection). If X is a set of attributes {B1, . . . , Bm} ⊆ S and t is a tuple of a relation with
signature S, we can form a simultaneous projection,

t.X = {B1 = t.B1, . . . , Bm = t.Bm}

Definition (functional dependency, FD). Assume X is a set of attributes and A an attribute, all belonging to a
signature S. Then A is functionally dependent on X in the relation R, written X → A, if
• for all tuples t,u in R, if t.X = u.X then t.A = u.A.

If Y is a set of attributes, we write X → Y to mean that X → A for every A in Y.
Definition (multivalued dependency, MVD). Let X,Y,Z be disjoint subsets of a signature S such that S = X ∪Y ∪Z.
Then Y has a multivalued dependency on X in R, written X →→ Y , if
• for all tuples t,u in R, if t.X = u.X then there is a tuple v in R such that

– v.X = t.X
– v.Y = t.Y

9

– v.Z = u.Z
Definition. An attribute A follows from a set of attributes Y, if there is an FD X → A such that X ⊆ Y .
Definition (closure of a set of attributes under FDs). The closure of a set of attributes X ⊆ S under a set FD of
functional dependencies, denoted X+, is the set of those attributes that follow from X.
Definition (trivial functional dependencies). An FD X → A is trivial, if A ∈ X.
Definition (superkey, key). A set of attributes X ⊆ S is a superkey of S, if S ⊆ X+.
A set of attributes X ⊆ S is a key of S if
• X is a superkey of S
• no proper subset of X is a superkey of S

Definition (Boyce-Codd Normal Form, BCNF violation). A functional dependency X → A violates BCNF if
• X is not a superkey
• the dependency is not trivial

A relation is in Boyce-Codd Normal Form (BCNF) if it has no BCNF violations.
Definition (prime). An attribute A is prime if it belongs to some key.
Definition (Third Normal Form, 3NF violation). A functional dependency X → A violates 3NF if
• X is not a superkey
• the dependency is not trivial
• A is not prime

Definition (trivial multivalued dependency). A multivalued dependency X →→ A is trivial if Y ⊆ X or X ∪ Y = S.
Definition (Fourth Normal Form, 4NF violation). A multivalued dependency X →→ A violates 4NF if
• X is not a superkey
• the MVD is not trivial.

Algorithm (BCNF decomposition). Consider a relation R with signature S and a set F of functional dependencies.
R can be brought to BCNF by the following steps:

1. If R has no BCNF violations, return R
2. If R has a violating functional dependency X → A, decompose R to two relations

• R1 with signature X ∪ {A}
• R2 with signature S − {A}

3. Apply the above steps to R1 and R2 with functional dependencies projected to the attributes contained in each
of them.

Algorithm (4NF decomposition). Consider a relation R with signature S and a set M of multivalued dependencies.
R can be brought to 4NF by the following steps:

1. If R has no 4NF violations, return R
2. If R has a violating multivalued dependency X →→ Y , decompose R to two relations

• R1 with signature X ∪ {Y }
• R2 with signature S − Y

3. Apply the above steps to R1 and R2
Concept (minimal basis of a set of functional dependencies; not a rigorous definition). A minimal basis of a set F
of functional dependencies is a set F- that implies all dependencies in F. It is obtained by first weakening the left hand
sides and then dropping out dependencies that follow by transitivity. Weakening an LHS in X → A means finding a
minimal subset of X such that A can still be derived from F-.
Algorithm (3NF decomposition). Consider a relation R with a set F of functional dependencies.

1. If R has no 3NF violations, return R.
2. If R has 3NF violations,

• compute a minimal basis of F- of F
• group F- by the left hand side, i.e. so that all depenencies X → A are grouped together
• for each of the groups, return the schema XA1 . . . An with the common LHS and all the RHSs
• if one of the schemas contains a key of R, these groups are enough; otherwise, add a schema containing just

some key

10

Relational algebra

relation ::=

relname name of relation (can be used alone)

| σcondition relation selection (sigma) WHERE

| πprojection+ relation projection (pi) SELECT

| ρrelname (attribute+)? relation renaming (rho) AS

| γattribute*,aggregationexp+ relation

grouping (gamma) GROUP BY, HAVING

| τexpression+ relation sorting (tau) ORDER BY

| δ relation removing duplicates (delta) DISTINCT

| relation × relation cartesian product FROM, CROSS JOIN

| relation ∪ relation union UNION

| relation ∩ relation intersection INTERSECT

| relation − relation difference EXCEPT

| relation ./ relation NATURAL JOIN

| relation ./condition relation theta join JOIN ON

| relation ./attribute+ relation INNER JOIN

| relation ./oattribute+ relation FULL OUTER JOIN

| relation ./oLattribute+ relation LEFT OUTER JOIN

| relation ./oRattribute+ relation RIGHT OUTER JOIN

projection ::=

expression expression, can be just an attribute

| expression → attribute rename projected expression AS

aggregationexp ::=

aggregation(*|attribute) without renaming

| aggregation(*|attribute) → attribute with renaming AS

expression, condition, aggregation, attribute ::=

as in SQL, but excluding subqueries

11

SQL

statement ::= type ::=

CREATE TABLE tablename (CHAR (integer) | VARCHAR (integer) | TEXT

* attribute type inlineconstraint* | INT | FLOAT

* [CONSTRAINT name]? constraint deferrable?

) ; inlineconstraint ::= ## not separated by commas!

| PRIMARY KEY

DROP TABLE tablename ; | REFERENCES tablename (attribute) policy*

| | UNIQUE | NOT NULL

INSERT INTO tablename tableplaces? values ; | CHECK (condition)

| | DEFAULT value

DELETE FROM tablename

? WHERE condition ; constraint ::=

| PRIMARY KEY (attribute+)

UPDATE tablename | FOREIGN KEY (attribute+)

SET setting+ REFERENCES tablename (attribute+) policy*

? WHERE condition ; | UNIQUE (attribute+) | NOT NULL (attribute)

| | CHECK (condition)

query ;

| policy ::=

CREATE VIEW viewname ON DELETE|UPDATE CASCADE|SET NULL

AS (query) ; deferrable ::=

| NOT? DEFERRABLE (INITIALLY DEFERRED|IMMEDIATE)?

ALTER TABLE tablename tableplaces ::=

+ alteration ; (attribute+)

|

COPY tablename FROM filepath ; values ::=

postgresql-specific, tab-separated VALUES (value+) ## VALUES only in INSERT

| (query)

query ::=

SELECT DISTINCT? columns setting ::=

? FROM table+ attribute = value

? WHERE condition

? GROUP BY attribute+ alteration ::=

? HAVING condition ADD COLUMN attribute type inlineconstraint*

? ORDER BY attributeorder+ | DROP COLUMN attribute

|

query setoperation query localdef ::=

| WITH tablename AS (query)

query ORDER BY attributeorder+

no previous ORDER in query columns ::=

| * ## literal asterisk

WITH localdef+ query | column+

table ::= column ::=

tablename expression

| table AS? tablename ## only one iteration allowed | expression AS name

| (query) AS? tablename

| table jointype JOIN table ON condition attributeorder ::=

| table jointype JOIN table USING (attribute+) attribute (DESC|ASC)?

| table NATURAL jointype JOIN table

setoperation ::=

condition ::= UNION | INTERSECT | EXCEPT

expression comparison compared

| expression NOT? BETWEEN expression AND expression jointype ::=

| condition boolean condition LEFT|RIGHT|FULL OUTER?

| expression NOT? LIKE ’pattern*’ | INNER?

| expression NOT? IN values

| NOT? EXISTS (query) comparison ::=

| expression IS NOT? NULL = | < | > | <> | <= | >=

| NOT (condition)

12

compared ::=

expression ::= expression

attribute | ALL|ANY values

| tablename.attribute

| value operation ::=

| expression operation expression "+" | "-" | "*" | "/" | "%"

| aggregation (DISTINCT? *|attribute) | "||"

| (query)

pattern ::=

value ::= % | _ | character ## match any string/char

integer | float | string ## string in single quotes | [character*]

| value operation value | [^ character*]

| NULL

aggregation ::=

boolean ::= MAX | MIN | AVG | COUNT | SUM

AND | OR

triggers ## privileges

functiondefinition ::= statement ::=

CREATE FUNCTION functionname() RETURNS TRIGGER AS $$ GRANT privilege+ ON object TO user+ grantoption?

BEGIN | REVOKE privilege+ ON object FROM user+ CASCADE?

* triggerstatement | REVOKE GRANT OPTION FOR privilege

END ON object FROM user+ CASCADE?

$$ LANGUAGE ’plpgsql’ | GRANT rolename TO username adminoption?

;

privilege ::=

triggerdefinition ::= SELECT | INSERT | DELETE | UPDATE | REFERENCES

CREATE TRIGGER triggernane | ALL PRIVILEGES ## | ...

whentriggered

FOR EACH ROW|STATEMENT object ::=

? WHEN (condition) tablename (attribute+)+ | viewname (attribute+)+

EXECUTE PROCEDURE functionname | trigger ## | ...

;

user ::= username | rolename | PUBLIC

whentriggered ::=

BEFORE|AFTER events ON tablename grantoption ::= WITH GRANT OPTION

| INSTEAD OF events ON viewname

adminoption ::= WITH ADMIN OPTION

events ::= event | event OR events

event ::= INSERT | UPDATE | DELETE ## transactions

triggerstatement ::= statement ::=

IF (condition) THEN statement+ elsif* END IF ; START TRANSACTION mode* | BEGIN | COMMIT | ROLLBACK

| RAISE EXCEPTION ’message’ ;

| statement ; ## INSERT, UPDATE or DELETE mode ::=

| RETURN NEW|OLD|NULL ; ISOLATION LEVEL level

| READ WRITE | READ ONLY

elsif ::= ELSIF (condition) THEN statement+

level ::=

SERIALIZABLE | REPEATABLE READ | READ COMMITTED

| READ UNCOMMITTED

indexes

statement ::=

CREATE INDEX indexname ON tablename (attribute+)?

13

XML

document ::= header? dtd? element

starttag ::= < ident attr* >

header ::= "<?xml version=1.0 encoding=utf-8 standalone=no?>" endtag ::= </ ident >

standalone=no if with DTD emptytag ::= < ident attr* />

dtd ::= <! DOCTYPE ident [definition*]> attr ::= ident = string ## string in double quotes

definition ::= ## XPath

<! ELEMENT ident rhs >

| <! ATTLIST ident attribute* > path ::=

axis item cond? path?

rhs ::= | path "|" path

EMPTY | #PCDATA | ident

| rhs"*" | rhs"+" | rhs"?" axis ::= / | //

| rhs , rhs

| rhs "|" rhs item ::= "@"? (ident*) | ident :: ident

attribute ::= ident type #REQUIRED|#IMPLIED cond ::= [exp op exp] | [integer]

type ::= CDATA | ID | IDREF exp ::= "@"? ident | integer | string

element ::= starttag element* endtag | emptytag op ::= = | != | < | > | <= | >=

Grammar conventions

• CAPITAL words are SQL or XML keywords, to take literally
• small character words are names of syntactic categories, defined each in their own rules
• | separates alternatives
• + means one or more, separated by commas in SQL, by white space in XML
• * means zero or more, separated by commas in SQL, by white space in XML
• ? means zero or one
• in the beginning of a line, + * ? operate on the whole line; elsewhere, they operate on the word just before
• ## start comments, which explain unexpected notation or behaviour
• text in double quotes means literal code, e.g. "*" means the operator *
• other symbols, e.g. parentheses, also mean literal code (quotes are used only in some cases, to separate code

from grammar notation)
• parentheses can be added to disambiguate the scopes of operators, in both SQL and XML

14

