Databases Exam March 2018
TDA357 (Chalmers), DIT620 (University of Gothenburg)

Solutions

Aarne, Alejandro,...



Build an ER model for the following concepts:
1 5 e A stop has a name. which uniquely identifies it. A stop also has a location, which by nature is unique as well
a ( p) (since there cannot be two stops at the same location).

e A line has a number, which uniquely identifies it. A line also has two stops as its start point and end point.

Moreover, a line has a vehicle, such as tram or bus or ferry.

Also write a database schema, in the form of SQL CREATE TABLE statements, corresponding to this description. The
schema will be graded independently of yvour ER model. You can get started by deriving the schema from your ER
model, but notice that a schema can often express constraints that the ER model cannot. Therefore. don’t panic if
yvou cannot express all the constraints in your ER model.

CREATE TABLE Stop(
name TEXT PRIMARY KEY,
location TEXT UNIQUE

b -

Line

) CREATE TABLE Line(
Stats number  TEXT PRIMARY KEY,
@ vehicle  TEXT,

starpoint TEXT REFERENCES Stop(name),
Stop endpoint TEXT REFERENCES Stop(name)




1b (7p)

1 b (7 p) This is a variation of la, where we take into account all the stops along a line, not only the start and end points.

e (like in la:) A stop has a name, which uniquely identifies it. A stop also has a location, which by nature is
unique as well (since there cannot be two stops at the same location).

e A line has a number and a vehicle. The number identifies the line uniquely.

e Each line runs through a set of stops, the stops on that line. Each stop on a line has a travel time, which is
the number of minutes it takes to travel to that stop from the start point of the line. A stop on a line is uniquely
determined by the line number and the stop name. But we also require the travel times to be unique, i.e. that
it takes at least one minute to travel from one stop to the next. (The start and the end points of a line are then
indirectly defined by the minimum and maximum travel times.)

The task is again to build an ER model, as well as a schema in the form of SQL CREATE TABLE statements. You should
build all of this separately from (la). The schema should express all the relevant constraints that can be expressed in
SQL. Some of them might not be expressible in the ER model.

CREATE TABLE Stop(
Vehicle name TEXT PRIMARY KEY,

location TEXT UNIQUE
)3

Line Tiihe

CREATE TABLE Line(

@ number ~ TEXT PRIMARY KEY, alternative
vehicle  TEXT .@

OF

Stop Stop

v, CREATE RunsThrough (
@ line TEXT REFERENCES Line (number),

@ stop TEXT REFERENCES Stop(name), —

travetime INTEGER,
PRIMARY KEY (line,stop),
CONSTRAINT time_unique UNIQUE (line,stop,travetime)
)5 _

Notice: none of the ER models in 1a,b is a precise expression of the UNIQUE constraints.



line | vehicle @ model | start point | start city | end point end city | start time | capacity
2 tram M28 AxelDs torg Goteborg Molndal Molndal 16:26 116
2 5 2 tram M31 AxelDs torg Goteborg Maolndal Molndal 17:16 202
a ( p) 4 tram | M31 Maolndal Maélndal Angered Goteborg | 16:26 202
16 bus B9S Fyrktorget Goteborg Eketrigatan | Goteborg | 12:44 138
35 bus | 7900 SvenHs plats | Goteborg Lindholmen | Goteborg | 10:05 105

Real FDs

startpoint -> startcity

endpoint -> endcity

model -> vehicle capacity

line -> vehicle startpoint endpoint
line starttime -> model

Key:
line starttime

Bogus FDs (no need to list all of these - just a few is enough)

capacity -> vehicle model (explanation: many models could have the same capacity)
starttime -> vehicle (many vehicles could start at the same time)

starttime capacity -> line startpoint endpoint (many vehicles of same capacity could start at same time)
endcity capacity -> line startpoint endpoint starttime (... easy to invent counterexamples to each ...)
endcity starttime -> line model startpoint startcity endpoint capacity

endpoint -> line vehicle startpoint startcity

endpoint capacity -> starttime

endpoint starttime -> model capacity

startcity capacity -> line startpoint endpoint endcity starttime

startcity starttime -> line model startpoint endpoint endcity capacity vehicle

startpoint -> line vehicle endpoint

startpoint capacity -> starttime

startpoint starttime -> model capacity

model starttime -> line startpoint startcity endpoint

model endcity -> line startpoint endpoint starttime

model endpoint -> starttime

model startcity -> line startpoint endpoint starttime

model startpoint -> starttime

vehicle endcity -> startcity

vehicle startcity -> endcity

line capacity -> starttime

line model -> starttime




2b (3p) [ oo oy | [ompors sy |

MéIndal MélIndal MélIndal MélIndal
R: line vehicle startpoint startcity endpoint endcity starttime . .
model capacity Angered Goteborg AxelDs torg Goteborg
violation: line -> vehicle startpoint startcity endpoint endcity
Decomposition: Eketragatan Goteborg Fyrktorget Goteborg
R1: line vehicle startpoint startcity endpoint endcity
Violation: endpoint -> endcity Lindholmen Goteborg SvenHs plats | Goteborg
Decomposition:
R12: line vehicle startpoint startcity endpoint _ _
Violation: startpoint -> startcity
Decomposition: M28 116 2 16:26 M28
‘ M31 | 202 2 17:16 M31
R2: model capacity starttime line
Vlolatlop:.model -> capacity B9S 138 4 16:26 M31
Decomposition:
7900 105 16 12:44 B9S
2 tram AxelDs torg MélIndal 55 10:05 7900
4 tram Mélndal Angered
16 bus Fyrktorget Eketragatan
55 bus SvenHs plats Lindholmen




-- 3a (3p) “lines that stop at Chalmers”

SELECT line, vehicle

FROM StopsOnLines, Lines

WHERE stop = 'Chalmers' AND line = Lines.number

-- 3b (4p) “connections from Chalmers to Brunnsparken with exactly one change”
WITH Distances AS (
SELECT A.stop AS startPoint, B.stop AS endPoint, A.line,
(B.timeFromStart - A.timeFromStart)) AS minutes
FROM StopsOnLines A, StopsOnLines B
WHERE A.line = B.line AND B.timeFromStart > A.timeFromStart

)
SELECT A.line, B.line, A.endPoint AS change, A.minutes + B.minutes AS duration

FROM Distances A, Distances B
WHERE A.startPoint='Chalmers' AND A.endPoint=B.startPoint AND B.endPoint='Brunnsparken’

-- 3c (5p) “classify stops into cities by the first letter of location code”
(SELECT name AS stop , 'Gothenburg' AS city

FROM Stops
WHERE location LIKE 'G%'
UNION
SELECT name AS stop, 'Molndal’' AS city
FROM Stops

WHERE location LIKE 'M%'
) ORDER BY name




SELECT DISTINCT A.name
FROM Stops A, Stops B
WHERE A.name = B.name
AND
A.location <> B.location

a.name =b .name AND a . location <>b .location O X

a stops b stops



SELECT name

4C FROM stops
GROUP BY name

HAVING COUNT (location)> 1

name, COUNT (location)

stops

-- alternative; avoids the big table
but may need more comparisons

SELECT DISTINCT A.name
FROM Stops A INNER JOIN Stops B ON
(A.name = B.name
AND
A.location <> B.location)

\

\




5a.b

-- 53 “restrict M28,M31 to trams and B9S,7900 to buses”

CREATE TABLE Vehicles (
vehicletype TEXT,
model TEXT,
capacity INT,
CHECK (model NOT IN ('M28','M31') OR vehicletype = 'tram'),
CHECK (model NOT IN ('B9S','7900') OR vehicletype = 'bus')
)

-- the constraints express “if A then B” by “not A or B”

-- 5b “timeFromPrevious is © if and only if ordering is ©”

CREATE TABLE StopsAndIntervals (
line TEXT REFERENCES Lines(number),-- we don’t care about the
referential and key constraints when grading this question
stop TEXT REFERENCES Stops(name),
ordering INT,
timeFromPrevious INT,
PRIMARY KEY (line,ordering),
CHECK (ordering <> 1 OR timeFromPrevious
CHECK (timeFromPrevious <> © OR ordering
)

-- the same logic as in 5a, for “if A then B” and “if B then A”

0),
1)




5c,d

-- 5¢c “list the times when lines stop at each stop”
CREATE VIEW StopTimes AS (
SELECT Runs.line AS line, stop, startTime+timeFromPrevious AS time
FROM StopsOnLines, Runs
WHERE
StopsOnLines.line = Runs.line

)

-- 5d “schedule a line to leave so that it stops at given stop at given time”
CREATE FUNCTION scheduleStopTime () RETURNS TRIGGER AS $$%
BEGIN
INSERT INTO Runs VALUES (NEW.line, NEW.time -
(SELECT timeFromPrevious FROM StopsAndIntervals S
WHERE NEW.stop = S.stop)) ;
RETURN NEW ;
END
$$ LANGUAGE plpgsql ;
CREATE TRIGGER scheduleStopTimeTrigger
INSTEAD OF INSERT ON StopTimes
FOR EACH ROW
EXECUTE PROCEDURE scheduleStopTime () ;

-- alternative solution to 5d forthcoming, corresponding to another
interpretation of the question




6, putting all data into elements

<?xml version="1.0" encoding="utf-8"
standalone="no"?>

<IDOCTYPE Route [

<!ELEMENT Route (Leg+)>

<!ELEMENT Leg (Dep, Arr, Line)>
<!ELEMENT Dep (Time, Stop, City)>
<!ELEMENT Arr (Time, Stop, City)>
<!ELEMENT Line (Number, Vehicle)>
<!ELEMENT Time (#PCDATA)>
<!ELEMENT Stop (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT Number (#PCDATA)>
<!ELEMENT Vehicle (#PCDATA)>

1>

<Route>
<Leg>
<Dep>
<Time>17:02</Time>
<Stop>Almedal</Stop>
<City>Goteborg</City>
</Dep>
<Arr>
<Time>17:12</Time>
<Stop>Mdlndal station</Stop>
<City>Mdlndal</City>
</Arr>
<Line>
<Number>2</Number>
<Vehicle>tram</Vehicle>
</Line>
</Leg>
<Leg>
<Dep>
<Time>17:23</Time>
<Stop>Molndal station</Stop>
<City>Mdlndal</City>
</Dep>
<Arr>
<Time>17:41</Time>
<Stop>Kungsbacka station</Stop>
<City>Kungsbacka</City>
</Arr>
<Line>
<Number>3069</Number>
<Vehicle>train</Vehicle>
</Line>
</Leg>
<Leg>
<Dep>
<Time>17:47</Time>
<Stop>Kungsbacka station</Stop>
<City>Kungsbacka</City>
</Dep>
<Arr>
<Time>18:14</Time>
<Stop>Idala</Stop>
<City>Kungsbacka</City>
</Arr>
<Line>
<Number>744</Number>
<Vehicle>bus</Vehicle>
</Line>
</Leg>
</Route>




6, alternative, using attributes

<?xml version="1.0" encoding="utf-8" <Route>

standalone="no"?> <Leg>

<!DOCTYPE Route [ <Dep time="17:02" stop="Almedal" city="Goteborg" />
<!ELEMENT Route (Leg+)> <Arr time="17:12" stop="M6lndal station" city="Mdlndal" />
<!ELEMENT Leg (Dep, Arr, Line)> <Line number="2" vehicle="tram" />

<!ELEMENT Dep EMPTY> </Leg>

<!ELEMENT Arr EMPTY> <Leg>

<!ELEMENT Line EMPTY> <Dep time="17:23" stop="Mdlndal station" city="Mdlndal" />
<!ATTLIST Dep <Arr time="17:41" stop="Kungsbacka station" city="Kungsbacka" />
time CDATA #REQUIRED <Line number="3069" vehicle="train" />

stop CDATA #REQUIRED </Leg>

city CDATA #REQUIRED <Leg>

> <Dep time="17:47" stop="Kungsbacka station" city="Kungsbacka" />
<!ATTLIST Arr <Arr time="18:14" stop="Idala" city="Kungsbacka" />

time CDATA #REQUIRED <Line number="744" vehicle="bus" />

stop CDATA #REQUIRED </Leg>

city CDATA #REQUIRED </Route>

>

<IATTLIST Line

number CDATA #REQUIRED

vehicle CDATA #REQUIRED

>

1>




