
Databases Exam HT2016 re-exam Solution

Solution 1a

1 of 7

Solution 1b

Team(city, name, coach)

Player(pn, name , position , skill)

PlaysFor(pn, city , name)

pn -> Player.pn

(city , name) -> Team.(city , name)

InjuryRecord(pn, id, description)

pn -> Player.pn

Game(hostcity , hostname , guestcity , guestname , date , score)

(hostcity , hostname) -> Team.(city , name)

(guestcity , guestname) -> Team.(city , name)

2 of 7

Solution 2a

• {A, B, C, D} does not identify all attributes.
• {A, C, D, E, G} is a superkey but not a key, since attribute G can be removed and the resulting set of

attributes is a key.

Solution 2b

Decompose on BC -> D

{BC}+ = {BCDG}

R1(B,C,D,G)

R2(B,C,A,E,F)

B,C -> R1.(B,C)

Decompose R2 on FA -> B

{FA}+ = {FAB}

R21(F,A,B)

R22(F,A,C,E)

F,A -> R21.(F,A)

Key of R22 is FACE

Solution 2c

BC -> G

Left side is not a superkey of R, and G is not prime in R.

Solution 2d

R1(B, C, D, G)

R2(D, E, F)

R3(F, A, B)

R4(F, A, C, E)

3 of 7

Solution 3a

CREATE TABLE Employees(

empId INT PRIMARY KEY ,

name TEXT NOT NULL ,

year INT NOT NULL ,

salary FLOAT NOT NULL CHECK(salary >= 0),

entitlement INT NOT NULL DEFAULT 30 CHECK(entitlement >= 0),

branch TEXT NOT NULL

);

CREATE TABLE ParentalLeave(

employee INT REFERENCES Employees ,

startDay INT NOT NULL CHECK(startDay >= 0 AND startDay <= 366),

startYear INT NOT NULL ,

endDay INT NOT NULL CHECK((endYear = startYear AND startDay <= endDay) OR

endYear > startYear),

endYear INT NOT NULL CHECK(endYear >= startYear)

);

Solution 3b

SELECT branch , COUNT (*)

FROM Employees e JOIN ParentalLeave p ON e.empId = p.employee

WHERE p.startYear <> p.endYear

GROUP BY e.branch;

Solution 3c

SELECT branch , AVG(salary) AS avgsalary

FROM Employees

GROUP BY branch

HAVING MIN(year) >= 1987

ORDER BY avgsalary;

4 of 7

Solution 4a

τname(πempId,name,salary+supplement(Employees ./ Offices))

Solution 4b

γcity,AV G(salary)→avgSalary(σdept=”sales”(Employees))

5 of 7

Solution 5a

CREATE VIEW VoteSummary AS

SELECT cityname , 100.0 * votecount / (SELECT SUM(votecount) FROM Votes)

from Votes;

Solution 5b

CREATE OR REPLACE FUNCTION fixUnknownVotes () RETURNS TRIGGER AS $$

BEGIN

IF NOT EXISTS (SELECT * FROM Votes WHERE cityname = ’<not voted >’)

THEN

INSERT INTO Votes(cityname , votecount) VALUES(’<not voted >’, 0);

END IF;

UPDATE Votes SET votecount = 1337 -

(SELECT SUM(votecount) FROM Votes WHERE cityname <> ’<not voted >’)

WHERE cityname = ’<not voted >’;

RETURN NULL;

END

$$ LANGUAGE ’plpgsql ’;

CREATE TRIGGER fixUnknownVotesTrigger AFTER INSERT OR UPDATE ON Votes

FOR EACH ROW WHEN (NEW.cityname <> ’<not voted >’)

EXECUTE PROCEDURE fixUnknownVotes ();

6 of 7

Solution 6a

No, Alice does not have the correct privileges. She does not need to read the password in the Users table, she
does not need INSERT privileges on UserStatus, and she does not need SELECT privileges on LogBook. In
addition, Alice lacks INSERT privileges on LogBook.

The minimally required set of permissions is:

GRANT SELECT(id , name) ON Users TO Alice;

GRANT SELECT(id , loggedin) ON UserStatus TO Alice;

GRANT INSERT(id , timestamp , name) ON LogBook TO Alice;

Solution 6b

The attacker can input something like ‘ or ‘1‘=‘1, so that the query turns into

SELECT FROM UserStatus WHERE id = ‘‘ or ‘1‘=‘1‘ ;

(mind the closing quote).
This is an example of an SQL injection vulnerability or attack.
The vulnerability can be removed by either correctly sanitizing or escaping the data in the userinput variable.

A better solution is to use a PreparedStatement with placeholder:

...

String query = "SELECT * FROM UserStatus WHERE id = ?";

PreparedStatement stmt = conn.prepareStatement(query);

stmt.setString(1, userinput);

ResultSet rs = stmt.executeQuery ();

...

Solution 6c

The transaction is vulnerable to “non-repeatable read” and “phantom read” interferences, because the READ

COMMITTED transaction isolation level does not protect against them. The stronger REPEATABLE READ isolation
level is not sufficient because it still allows phantom reads. Only the SERIALIZABLE isolation level is sufficient,
since it protects against dirty read, non-repeatable read and phantom read.

7 of 7

