Examination in Databases (TDA357/DIT620)

20 March 2015 at 8:30-12:30, Horsalsvagen 5

CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Department of Computer Science and Engineering

Examiner: Aarne Ranta tel. 772 10 82. The examiner will visit the exam room at 9:30 and
11:30.

Results: Will be published 10 April at the latest.

Exam review: In April after the Easter break. To be announced at course web page and in
the Google group.

Grades: Chalmers: 24 for 3, 36 for 4, 48 for 5. GU: 24 for G, 42 for VG.

Help material: One “cheat sheet”, which is a A4 sheet with hand-written notes. You may write
on both sides of that sheet. If you bring a sheet, it must be handed in with your answers to the
exam questions. One English language dictionary is also allowed.

Specific instructions:
e Answer in English where possible. You may clarify your answers in Swedish if you are
not confident you have expressed yourself correctly in English.
e Begin the answer to each question (numbers 1 to 6) on a new page (the a,b,c,... parts
with the same number can be on the same page)
Write clearly: unreadable = wrong!
Fewer points are given for unnecessarily complicated solutions.
Indicate clearly if you make any assumptions that are not given in the question.
In particular: in SQL questions, use standard SQL or Oracle. If you use any other
variant (such as MySQL), say this; but full points are not guaranteed.
e Write the question number on every page. If you need many pages for one question,
number the pages as well, for instance, “Question 3 p. 2”.

Most questions in this exam will be about one and the same domain: flights. This domain
makes heavy use of databases, familiar from web applications. The exam will go through
different aspects having to do with airlines, flight connections, and bookings.

Table 1. We start with a table listing some flights. It is an example of a relation that links

together flight codes, airlines, airports, and aircraft. The airlines and airports are real ones,
whereas the codes are fake.

flight airline prime operating departure departure | destination | destination aircraft | seats
code flight airline city airport city airport type

SK111 SAS SK111 SAS Gothenburg | GOT Frankfurt FRA B737 140
LH555 Lufthansa SK111 SAS Gothenburg | GOT Frankfurt FRA B737 140
AF111 Air France | AF111 Air France | Gothenburg | GOT Paris CDG A320 170
LH111 Lufthansa LH111 Lufthansa | Frankfurt FRA Paris CDG A321 200
LH222 Lufthansa LH222 Lufthansa | Frankfurt FRA Malta MLA A320 170
AF222 Air France | AF222 Air France | Paris ORY Malta MLA A320 170
AB222 Air Berlin AB222 Air Berlin Frankfurt FRA Munich MUC A320 170
KM111 Air Malta KM111 Air Malta Munich MUC Malta MLA A319 140
LH333 Lufthansa KM111 Air Malta Munich MucC Malta MLA A319 140
SK222 SAS KM111 Air Malta Munich MUC Malta MLA A319 140
AF333 Air France | AF333 Air France | Paris CDG Frankfurt FRA A320 170

We assume the following (slightly simplified) conventions for this domain:

the “flight code” attribute determines all other attributes on a row
the “prime flight” is the flight code used by the airline operating the flight; the “flight
code” in the first column can thus belong to another airline that has a code sharing
agreement with the operating airline
the “prime flight” appears in the table as a “flight code” as well, having itself as prime

flight

each airport has a unique code
every aircraft of the same type has the same number of seats

(It is a common practice that one and the same flight can be booked using different airlines.
Each airline uses a different "flight code", but the passengers end up in the same plane. The
code used by the actual operating airline is called the "prime flight" code. For example,
whether you book flight LH333 with Lufthansa or flight SK222 with SAS, you end up in the
plane of Air Malta flight KM111.)

Question 1. Modelling and Design, basic (11p)

Question 1a (2p)
Find at least four redundancies in Table 1.

Question 1b (5p)

Draw an Entity-Relationship diagram that models the data in Table 1 in a meaningful way.
The diagram must have some separate entities and relationships. Mark the keys by
underlining them.

Question 1c (4p)
Convert your Entity-Relationship (E-R) diagram to a database schema. Mark all keys and
references.

Question 2. Modelling and Design, advanced (9p)
This question refers to the same domain as Question 1.

Question 2a (3p)

Identify the functional dependencies and keys in the domain as described in Question 1. You
must have some functional dependencies that are not superkeys. Consider the entire Table 1
as one relation. For functional dependencies, it is enough to list a base (a minimal set that
implies all the others).

Question 2b (4p)

Starting with Table 1 and the functional dependencies and keys in (2a), decompose the
relation into BCNF (Boyce-Codd Normal Form). Show all intermediate steps. Notice: if you
find out that the relation is already in BCNF, then you have done something wrong in (2a).

Question 2c (2p)
Suppose you know the attributes of a relation and that it has no functional dependencies.
e Do you have enough information to bring it to BCNF. If yes, how? If no, why?
e Do you have enough information to bring it to the Fourth Normal Form (4NF). If yes,
how? If no, why?

Question 3. Construction and Querying, basic (17p)

Question 3a (4p)
Convert the schema you designed in Question 1c to SQL. Make sure you use reasonable
datatypes and express all referential constraints properly.

Questions 3b-3d

In the questions that follow, we need information about departure and arrival times. We
assume the following relations have been implemented as tables in SQL.:

Airports(code,city)
FlightCodes(code, airlineName)

Flights(departureAirport, destinationAirport, departureTime, arrivalTime, code)
departureAirport -> Airports.code
destinationAirport -> Airports.code
code -> FlightCodes.code

The listed flight code is the prime flight (i.e. the one used by the operating airline). For
simplicity, we assume that departureTime and arrivalTime are integers denoting full hours, all
in the same time zone, and that

0 < departureTime < arrivalTime < 24

Question 3b (3p)
Using this schema (not the one you defined in 1c), write an SQL query that finds all airports
that have departures or arrivals (or both) of flights operated by Lufthansa or SAS (or both).

Question 3c (3p)

Using the schema from (3b), write an SQL query that shows the names of all cities together
with the number of flights that depart from them, and sorts them by the number of flights in
descending order (i.e. the city with the largest number of departures first).

Question 3d (7p)

Using the above schema (same as in 3b and 3c), write a view that lists all connections from
any city X to any other city Y involving 1 or 2 legs (i.e. separate flights between two cities: if
you fly from Gothenburg to Paris with a change in Frankfurt, the connection has two legs).

The query must return a table with the following information (and nothing else):

the departure city X and destination city Y

the departure time from X and the arrival time in Y
the number of legs

the total time from departure in X to arrival in Y
the total time spent in the air

A change is possible if and only if (1) it happens at the same airport (2) the changing time is at
least 1 hour, and (3) the connecting flight is on the same day.

Question 4. Construction and Querying, advanced (6p)
Note: In these questions, we don’t care about the set/multiset distinction.

Question 4a (3p)
Express the query of question in (3b) by a relational algebra expression.

Question 4b (3p)
Translate the following relational algebra expression to an SQL query:

TcFirst.depatureTime,Second.arrivaITime

((QFirst(F”ghtS)) D4First.destinationAirport = Second.departureAirport (QSecond(F"ghtS)))

Question 5. Triggers, basic (9p)

Assume the following two tables are added to the schema in (3b): a table listing for each flight
the number of available seats and the price per ticket,

AvailableFlights(flight, numberOfFreeSeats, price)
flight -> Flights.code

another one listing the passengers that have been booked for each flight, with the price they
have paid and a unique booking reference number (an integer, to keep things simple),

Bookings(reference, flight, passenger, price),
flight -> Flights.code

Question 5a (2p)
Create a view that lists booking references, passengers, flight codes, and departure and
destination cities.

Question 5b (7p)

Create a trigger on the view defined in (5a). This trigger takes care of booking a new
passenger to a flight. It is fired by an insertion of a passenger and a flight code to the view, for
instance, “book Annie Adams for AF666”. Its effect should be the following:

e if the number of free seats on AF666 is positive, decrement it by one; the booking is
successful
if there are no free seats, the booking fails
if the booking is successful, add Annie Adams and AF666 to Bookings, with the price
given in AvailableFlights when booking her; also add a booking reference which is the
maximum of the previous references (for all flights) plus one

e if the booking is successful, increment the price by 50 SEK for the next passenger
(thus the fuller the flight, the more you pay)

Question 6. Miscellaneous, advanced (8p)

Question 6a (4p)

Bookings are typically made concurrently by many users. Assuming that the booking steps in
(5b) are not an atomic transaction, show sequences of events (i.e. queries and updates from
different customers) where

e a customer is suggested a flight but it turns out to be full
e a customer is told that a flight is full although it has seats
e a customer has to pay overprice i.e. a price that applies to customers booking later

For each sequence, also indicate which isolation level would prevent the undesired outcome
from happening.

Question 6b (4p)

Write an XML document that contains a DTD corresponding to the database schema in (3b)
together with data used on the first and the last row in the table of Table 1 (where you can
invent the departure and arrival times yourself).

