Solutions to Examination in Databases (TDA357/DIT620)
20 March 2015 at 8:30-12:30, Horsalsvdgen 5

CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG,
Department of Computer Science and Engineering
Teacher: Aarne Ranta

The answers are written in handwriting font on cyan background, and all other text is
explanations. Thus the minimal answer can be seen from the cyan text.

Question 1a: four redundancies in Table 1.

number of seats repeated for each occurrence of aircraft

city repeated for each departure airport code

city repeated for each destination airport code

airline, cities, and aircraft of prime flight repeated for each flight code

airline is redundant if the flight code is given, because it can be computed from
the two-letter prefix of the code

Op for the wrong idea about what a redundancy is

o s W

Question 1b: Entity-Relationship diagram for data in Table 1. There are several other correct
answers. The picture is enough as an answer.

Adreraft

7T

>

PrimeFlight
Airport

SharesFlight

0

Flight

-2 for the wrong design of Primary flight

-1 for wrong types of relationships

-2 for suggesting storing lot of redundant data (could be same -2 as wrong design prime flight)
Question 1c: convert your Entity-Relationship (E-R) diagram to a database schema.

Airports(_code,city)
Aircraft(_type seats)

Flights(_code,airline primeFlight)
primeFlight -> PrimeFlights.code

PrimeFlights(_code,depAirport,destAirport aircraft)
code -> Flights.code
depAirport -> Airports.code
destAirport -> Airports.code
aircraft -> Aircraft.type

-3 if all relationships are translated incorrectly

Question 2a
functional dependencies
« flightCode -> (all attributes) (enough to say airline and primeFlight)
« departureAirport -> departureCity
« destinationAirport -> destinationCity
« aircraft -> seats
« primeFlight -> all attributes except flightcode and airline

optionally also:
« primeFlight airline -> (all attributes) (enough to write flightCode)
« primeFlight -> operatingAirline
keys:
« flightCode
optionally also (assuming another company uses just one code for sharing a flight)
e primeFlight, airline

The optional dependencies and keys are not required in the answer, but compensate for
possibly missing other ones.

Keys missing: -1

-2 for giving FDs for their own schema instead of the given table

-1 for incorrectly calculated closure

Question 2b BCNF
R1(_aircraftType, seats)
R2 (_destinationAirport, destinationCity)
R3(_departureAirport, departureCity)
primeFlight -> operatingAirline brings another relation if considered
R4(_flightCode, airline, primeFlight, operatingAirline, departureAirport,
destinationAirport, aircraftType)
departureAirport -> R3.departureAirport
destinationAirport -> R2.destinationAirport

aircraftType -> Rl.aircraftType

0 if some of the violating FDs are not acted on
0 if acted on a FD that does not violate BCNF

Question 2c: a relation that has no functional dependencies.
Enough information to bring it to BCNF?

Yes. It is already in BCNF, so we need not do anything.
Enough information to bring it to 4NF?
No. There can be multivalued dependencies that are not functional dependencies.

0 if vague speculations instead of yes or no

Question 3a The schema of Question 1c in SQL.

CREATE TABLE Airports (
code CHAR(3) PRIMARY KEY,
name VARCHAR(32)
):
CREATE TABLE Aircraft(
type VARCHAR(16) PRIMARY KEY,
seats INT
):
CREATE TABLE PrimeFlights(
code VARCHAR(8) PRIMARY KEY,
depAirport CHAR(3) REFERENCES Airports(code),
destAirport CHAR(3) REFERENCES Airports(code),
aircraft VARCHAR(16) REFERENCES Aircraft(type)
):
CREATE TABLE Flights(
code VARCHAR(8) PRIMARY KEY,
airline VARCHAR(32),
primeFlight VARCHAR(8) REFERENCES PrimeFlights(code)

)

optionally add this:

ALTER TABLE PrimeFlights ADD CONSTRAINT codeExists FOREIGN KEY (code)
REFERENCES Flights(code) ;

-2p if (most of) primary keys are missing
0 if introduces new tables

Question 3b: an SQL query that finds all airports that have departures or arrivals (or both) of
flights operated by Lufthansa or SAS (or both).

SELECT DISTINCT
served
FROM
((SELECT destinationAirport AS served airlineName
FROM FlightCodes JOIN Flights ON Flights.code = FlightCodes.code)
UNION
(SELECT departureAirport AS served,airlineName
FROM FlightCodes JOIN Flights ON Flights.code = FlightCodes.code)
)ASD
WHERE D.airlineName = 'Lufthansa’ OR D.airlineName = 'SAS" ;

-2p if the result is not an actual list of airports but e.g. all attributes.
-1 if the list has duplicates
There are many variants, for instance unions on other levels.

Question 3c: an SQL query that shows the names of all cities together with the number of
flights that depart from them, and sorts them by the number of flights in descending order

SELECT Airports.city, COUNT(Flights.code) AS nflights

FROM Airports JOIN Flights ON Airports.code = Flights.departureAirport
GROUP BY Airports.city

ORDER BY nflights DESC ;

This answer does not list cities with 0 departing flights, but this is OK.
-1 if forgot DESC

-1 if SUM instead of COUNT

-2 if forgot GROUP BY

Question 3d: a view that lists all connections from any city X to any other city Y involving 1 or
2 legs.

CREATE VIEW Connections AS
WITH
CityFlights AS
(SELECT departureAirport, D.city AS departureCity, destinationAirport,
A.city AS destinationCity, departureTime, arrivalTime
FROM Flights, Airports AS D, Airports AS A
WHERE D.code = departureAirport AND A.code = destinationAirport)
SELECT departure, arrival, totalTime, airTime, legs
FROM
((SELECT departureCity AS departure, destinationCity AS arrival,
arrivalTime - departureTime AS totalTime,
arrival Time - departureTime AS airTime,
1 AS legs
FROM CityFlights)
UNION
(SELECT Fl.departureCity AS departure, F2.destinationCity AS arrival,
F2.arrivalTime - Fl.departureTime AS totalTime,
(F2.arrivalTime - Fl.departureTime) - (F2.departureTime - Fl.arrival Time)
as airTime,
2 AS legs
FROM CityFlights F1 JOIN CityFlights F2 ON Fl.destinationAirport =
F2.departureAirport
WHERE Fl.arrivalTime < F2.departureTime
) ASF;

The last “AS F” is required in SQL because subqueries in FROM must have aliases. But we
do not require this.

Small errors:

show airports instead of cities: -1

show 2 or 3 legs instead of 1 or 2: -1

miscomputing airTime: -1

only 1 leg: 2

lack of comparison between arrivalTime and departureTime: -2

Question 4a: express 3b in relational algebra

nserved (GD.uirlineName ='Lufthansa’ OR D.airlineName = 'SAS' (QD (
T

served, airlineName (

Q(ser‘ved/desﬁnaﬂonAir'por"r) (FIlghTCOdCS MFlighfs.code = FIighTCodes.codeFligh.rs))
U

T

served, airlineName (
Q(ser‘ved/depar‘rur‘eAir‘por"r) (FI'QhTCOdes MFlighTs.code = Fligh‘rCodes,codeFl'ghts))

)
The subscript (b/a) to ¢ means that the attribute a is renamed to b whereas the other
attributes keep their old name. Variant notations for this renaming will be accepted if we
understand them.

Question 4b: translate an algebra expression to SQL

SELECT First.depTime, Second.arrival Time
FROM Flights AS First JOIN Flights AS Second
ON First.destAirport = Second.depAirport ;

-1 if translated as SELECT * FROM
- no deduction if doing renaming via WITH First AS SELECT * FROM Flights

The printed exam pdf had a slightly different-looking symbol for ¢. This may have been a
problem for some participants, but not many. The single-name subscript to ¢ means that the
whole relation is renamed.
Variations:

e use cartesian rather than JOIN: OK

Question 5a View with booking references, passengers, flight codes, and departure and
destination cities.

CREATE VIEW Passengers AS
SELECT B.reference, B.passenger, B.flight, D.city as dep, A.city as dest
FROM

Bookings B JOIN Flights F ON F.code = B.flight,

Airports D JOIN Flights G ON G.departureAirport = D.code,

Airports A JOIN Flights H ON H.destinationAirport = A.code

-2 if something of the form SELECT ... departure FROM... UNION SELECT ... destination FROM
-1 for airports instead of cities

Question 5b Trigger for booking a flight

We are not picky about the syntax when grading, but focus on checking that all the correct
actions are performed.

BEFORE instead of INSTEAD OF: -1
-1 if forgot to increase the price
-1 if used COUNT instead of MAX for reference

Question 6a: concurrency problems with isolation levels solving them.

A customer is suggested a flight but it turns out to be full

Customer 1: read
Database: freeseats=1 freeseats=0
Customer 2: read book commit

« nonrepeatable read, avoided by REPEATABLE READ
A customer is told that a flight is full although it has seats
Customer 1: read
Database: freeseats=1 freeseats=0
Customer 2: read book rollback
+ dirty read, avoided by READ COMMITTED

A customer has to pay overprice i.e. a price that applies to customers booking later

Customer 1: read book commit
Database: price=1000 price=1050
Customer 2: read book commit

« nonrepeatable read, avoided by REPEATABLE READ
The last one was left out from grading.

-3 if situations are described correctly but no isolation levels given

Question 6b: XML with DTD for the schema in 3b with the first and the last flights in Table 1.
There are many solutions; this is the one implemented in qconv.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<IDOCTYPE FlightData [
<[ELEMENT FlightData (Airports | FlightCodes | Flights)*>
<IELEMENT Airports EMPTY>
<ATTLIST Airports
code ID #REQUIRED
city CDATA #REQUIRED
>
<IELEMENT FlightCodes EMPTY>
<ATTLIST FlightCodes
code ID #REQUIRED
airlineName CDATA #REQUIRED
>
<IELEMENT Flights EMPTY>
JATTLIST Flights
departureAirport IDREF #REQUIRED
destinationAirport IDREF #REQUIRED
departureTime CDATA #REQUIRED
arrivalTime CDATA #REQUIRED
code IDREF #REQUIRED

>

P
<FlightData>

<Airports code="CGD" city="Paris" />

<Airports code="FRA" city="Frankfurt" />

<Airports code="GOT" city="Gothenburg" />

<FlightCodes code="AF333" airlineName="Air France" />

<FlightCodes code="SK111" airlineName="SAS" />

<Flights departureAirport="CDG" destinationAirport="FRA" departureTime="6"
arrivalTime="8" code="AF333" />

<Flights departureAirport="GOT" destinationAirport="FRA" departureTime="6"
arrivalTime="7" code="SK111" />
</FlightData>

Not using ID / IDREF correctly: -1
Missing DTD: one can get max 1
No root element: -1

