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1 Symmetric Ciphers (12 p)

(a) Imagine you are designing a block cipher based cryptographic file system. Describe the
modes ECB, CBC, and CTR, and discuss their relative merits in this setting. Which mode
would you choose? (5 p)

Solution: Below we describe the encryption of the ECB, CBC and CTR modes of opera-
tion. The decryption works in a reverse way.

ECB is the simplest mode of encryption for a block cipher.
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Modes of operation: Cipher Block Chaining (CBC) encryption mode

The CTR block cipher is defined as follows: E(k ,m): pick a random IV ∈ {0, 1}nt

Let F : K × {0, 1}n → {0, 1}n be a secure PRF and do:
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Modes of operation: CTR (deterministic counter mode) encryption mode

ECB is rather fast and parallel since for each block you can directly compute its encryption.
The same applies for the CTR mode of operation. However, the CBC mode of operation is
sequential since each encrypted block is used in the encryption of the subsequent block.

However, ECB is not semantically secure when a message is longer than one block since
the encryption is deterministic. CBC provides stronger security guarantees when the IV is
unpredictable but the ciphertext is longer since the IV is also needed. The latter also applies
in CTR since an IV is also used in this mode.

(b) How do we define IND-CPA security in secret key encryption? (3 p)

Solution:
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Chosen Plaintext Attack (CPA) - Secret Key Crypto
Attacker A Challenger C

k ∈ K

b ←−R{0, 1}
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for i = 1, . . . q do
choose m̄i ∈ M
learn c̄i

m0, m1 ←−DM
len(m0)= len(m1)

m0, m1

c=E(k, mb)
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Output b′ ∈ {0, 1}
a guess for b

m̄i

c̄i =E(k, m̄i)

Definition

A cipher (E,D) is secure under CPA if for any PPT adversary, it holds that:

P(b′ = b) <
1

2
+ negligible

(c) Prove that the CBC block cipher with predictable IV is not secure against CPA. (4 p)

Hint: Use in your description a security game and a successful strategy of the attacker in
the case the attacker has access to a predictable IV.

Solution:

CBC with predictable IV insecure against CPA
Useful for the exercises/exams!✄✂ #✁Exercise: Prove that the CBC block cipher with predictable IV is not secure against CPA.

Solution: Describe how CBC works and then the strategy of the attacker.

Attacker A Challenger C
k ∈ K

b
R← {0, 1}
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m0 =IV1 ⊕ IV2

pick m1 "= m0 with
len(m1) = len(m0)

m0, m1

c=ECBC(k, mb)

!
"
#
$%
&

'
(
)
*
#

+
(
)
,,
#
-
.
#
&

'
(
)
*
#

If c = [IV2, c̄2] output b′ = 0
else, output b′ = 0

m̄

c̄

Choose
m = (0, . . . , 0)︸ ︷︷ ︸

n bits

learn c̄

predictIV(IV1)=IV2

ECBC(k, m0)=[IV2,E(k, (IV1 ⊕ IV2) ⊕ IV2)]

=[IV2,E(k, IV1)] = [IV2, c̄2]

ECBC(k, m1)=[IV2,E(k, m1 ⊕ IV2)]

c̄=[IV1,E(k,(0, . . . , 0)⊕IV1)]

=[IV1,E(k, IV1)] = [c̄1, c̄2]

Let W0 be the event that C chooses b = 0, and A outputs b′ = 0.
Let W1 be the event that C chooses b = 1, and A outputs b′ = 0.

Then, it holds: |P(W0) − P(W1)| = |1 − 0| = 1 November 15, 2019 14 / 39

2 Public Key Encryption (9 p)

(a) Bob receives two messages and their corresponding ciphertexts, m1,c1 and m2,c2 with El
Gamal encryption under the same public key:

Enc(m1) = (gr1 ,hr1 ·m1)

Enc(m2) = (gr2 ,hr2 ·m2)
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for a cyclic group G =< g > of order q and h = gx , pk = (G,g,q,h) and sk = (x), and
r1,r2,x

R← Zq.

Bob does not have the secret key x used for the encryption of the messages. Can he generate
a new message and the corresponding ciphertext for this message only by having access to
m1,c1 and m2,c2? (3 p)

Solution:
(Correction Bob does not really need access to the secret key). Since Bob has access to
c1 = Enc(m1) and c2 = Enc(m2) he can easily compute:

c1 · c2 = Enc(m1) ·Enc(m2)

= (gr1 ·gr2 ,hr1 ·m1 ·hr2 ·m2)

= (gr1+r2 ,hr1+r2 ·m1 ·m2)

= Enc(m1 ·m2)

Thus, for the message m = m1 ·m2 he is able to compute the corresponding ciphertext
c = Enc(m1 ·m2) = c1 · c2 by having access to m1,c1 and m2,c2

(b) How is this property called? Does textbook RSA have the same property? Explain and
justify your answer. (2 p)

Solution:
The property is called homomorphic.

Indeed for textbook RSA we have:

Let m1 and its corresponding ciphertext c1 when encrypting with textbook RSA. I.e. it
holds:

c1 = me
1 (mod N)

where e R← ZΦ(N) such that GCD(e,Φ(N)) = 1.

Similarly for a message m2 and corresponding cipher text c2 we have:

c2 = me
2 (mod N)

.

Thus, it is easy to see that by having access to m1,c1 and m2,c2 it is possible to have the
encryption that corresponds to the message m = m1 ·m2. More precisely, it holds:

c1 · c2 = Enc(m1) ·Enc(m2)

= me
1 (mod N) ·me

2 (mod N)

= (m1 ·m2)
e (mod N)

= Enc(m1 ·m2)

Thus, for the message m = m1 ·m2 Bob is able to compute the corresponding ciphertext
c = Enc(m1 ·m2) = c1 · c2 by having access to m1,c1 and m2,c2

(c) Does this property have an effect on the security of textbook RSA and and El Gamal? Show
that one of the two is susceptible to IND-CCA attacks using a security game. (4 p).

Solution:
Yes indeed due to the homomorphic property both El Gamal and textbook RSA are suscep-
tible to IND-CPA attacks. Below is described why El Gamal is susceptible to IND-CPA.
Similarly, it can be shown for textbook RSA.
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Re-Exam April 2016
Question 3. (c) Show that El Gamal is not secure against a chosen ciphertext attack.

Attacker A Challenger C

KeyGen(λ)→(pk, sk)

b
R←− {0, 1}

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

A can encrypt
polynomially many
messages that he chooses

m0, m1
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Output b′ ∈ {0, 1}
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c′

for i = 1, . . . q do
choose c̄i ∈ C
learn m̄i

m0, m1
D←− M

len(m0)= len(m1)

m̄i =Dec(sk, c̄i)

c̄i

m̄i

c′ =Enc(pk, mb)·Enc(pk, m′)

= Enc(pk, mb · m′)

Choose

mb · m′ =Dec(sk, c′)mb · m′

c c=Enc(pk, mb)

Quiz Question: What should the attacker do next? He knows m′ so he can get mb·m′
m′ = mb!

Let W0 be the event that C chooses b = 0 and A outputs b′ = 0.

Let W1 be the event that C chooses b = 1 and A outputs b′ = 0.

Then we have: |P(W0) − P(W1)| = |1 − 0| = 1
November 26, 2018 21 / 32

3 Data Integrity (17 p)

(a) Explain how textbook RSA can be used for digital signatures, i.e., explain how to sign and
how to verify the signature. (3 p)

Solution:
Useful for the exercises/exams!✬

✫

✩

✪

Textbook RSA Signature Scheme

KeyGen(λ) → (pk, sk)

1. generate two distinct λ-bit primes p and q, compute N = pq and Φ(N).

2. choose an integer e
R← ZΦ(N) such that GCD(e,Φ(N)) = 1 and compute its

(modular) inverse d = e−1 mod Φ(N).

3. set: pk = (N, e) and sk = (N, d)

Sign(sk,m) → σ : compute md (mod N) = σ

Verify(pk,m, σ) → 1/0 : outputs 1 if and only if σe (mod N)
?
= m

Φ denotes Euler’s phi (or Totient) function i.e., the number of positive integers less than n and

relatively prime to n (more info about this in lec06).

For now remember Φ(N) = Φ(pq) = (p − 1)(q − 1). December 12, 2019 22 / 35

(b) How do we define an existential forgery in digital signatures? (2 p)

Solution:

When an existential forgery is possible then an attacker can win the following game with
non-negligible probability.
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Security concept: Secure Signatures
Attacker A Challenger C
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σi =Sign(sk, mi)
for i = 1, . . . q do
choose mi learn σi

m
D←− M

m /∈ {m1, . . . , mq}

σi

(m, σ)

KeyGen(λ)→(pk, sk)pk

b = 1 if Verify(pk, m, σ)=1
and m /∈ {m1, . . . , mq}
b = 0 otherwiseb

Definition

A public signature scheme (KeyGen, Sign, Verify) is secure, if for any efficient
adversary A it holds:

P(Challenger outputs 1) is negligible

(c) Bob has received from Alice two signed documents (m1,σ1) and (m2,σ2). Show that Bob
can perform an existential forgery attack on textbook RSA signatures, i.e., given messages,
m1, m2, and the corresponding signatures, σ1 and σ2, show how to construct a new message
m and a corresponding valid signature σ without having access to the key. (5 p)

Hint: Show this by describing an attacker and his strategy to win the existential forgery
game against textbook RSA signatures.

Solution:

Attack: Existential forgery against RSA Signatures!

Attacker A
Challenger C
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b = 1 if Verify(pk,m, σ)=1
and m /∈ {m1, m2}
b = 0 otherwise

σ1, σ2

(m, σ)

b

KeyGen(λ)→(pk, sk)

Choose m1,m2

learn σ1, σ2 σ2=Sign(sk,m2)

m = m1 · m2

σ = σ1 · σ2 =
Sign(sk,m1) · Sign(sk,m2) =
Sign(sk,m1 · m2)

m1,m2

σ1 =Sign(sk,m1)

pk

The attacker A is able to create a valid pair of a message m and a corresponding signature σ,

using the homomorphic property of the RSA signature scheme and thus successfully create a

forgery, i.e., P(Challenger outputs 1) = 1

(d) How can we change the way we produce RSA signatures to protect against the above exis-
tential forgery attack? Give the construction and show that the attack no longer works. (3
p)

Solution:
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How to avoid this type of attack? The hash-and-sign Paradigm
Instead of signing a message m we sign the hash of the message H(m)!✛

✚

✘

✙

Why does it work for textbook RSA signatures?

Sign(sk,H(m1)) · Sign(sk,H(m2)) = H(m1)
d · H(m2)

d =

(
H(m1) · H(m2)

)d

!=
(

H(m1 · m2)

)d

= Sign(sk,H(m1 · m2))✬

✫

✩

✪

Hash-and-Sign Construction
Let S= (KeyGen, Sign, Verify) be a public-key signature scheme scheme for messages
of length n and H be hash function with output n bits. Then, we may construct a new
signature scheme S’=(KeyGen’, Sign’, Verify’) defined as follows:

◮ KeyGen′(λ) → (pk, sk) : is a key generation algorithm that runs KeyGen and
outputs a public and a private key (pk, sk).

◮ Sign′(sk,m) → σ : is a signing algorithm that, given a secret key sk and a message
m it computes Sign(sk,H(m)) = σ

◮ Verify′(pk,m, σ) → {1, 0} : is a deterministic verification algorithm that, given
the public key pk and a signature σ, it computes Verify(pk,H(m), σ) and outputs
1 if the signature verifies or 0 if it does not verify.

(e) Consider that we employ a hash function (based on the Merkle-Damgård construction) to
construct a MAC. More precisely it holds: MAC(k,m) =H(k||m). Is this MAC construction
secure against existential forgery? Prove your reasoning.

Hint: Show this by describing an attacker and his strategy to win the existential forgery
game against the MAC construction. (4 p)

Solution:

What if we use: MAC(k,m) = H(k||m)

Attacker A
Challenger C

KeyGen(λ)→k
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Choose m ∈ M′

learn t
t=FCBC(k, m)

Choose
m′ = m||w︸ ︷︷ ︸

two blocks

b = 1 if Verify(k, m′, t′)=1
and (m′, t′) /∈ {(m, t)}
b=0, otherwise
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The attacker is able to produce a valid pair (m′, t′) thus b = 1. So it holds:

P(Challenger outputs 1) = 1

4 Cryptographic Protocols (12 p)

1. We recall the Fiat-Shamir authentication protocol. Let N = p · q, where p and q are
primes. The prover P wants to convince the verifier V that he knows a square-root of
y ∈ Z∗N , i.e., a number x such that y = x2 ∈ Z∗N , without revealing x to V . They use the
following protocol. All computations are in Z∗N .

• P generates a random r, computes R = r2 and sends R to V (the commitment).

• V generates a uniformly random bit b and sends it to P (the challenge).

• If b = 0, P responds with z = r, if b = 1 with z = r · x (the response).
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(a) What computation will V perform to check P’s values? (2 p)
Solution:
V will check if it holds: z2 = R · yb (mod N). Indeed we have:

z2 =

{
r2 · y0, if b = 0
r2 · y, if b = 1

=

{
r2, if b = 0
r2 · x2, if b = 1

(b) Discuss how a cheating P, who does not know x, can achieve a probability of 0.5 of
passing the test. (2 p)
Solution:
A cheating P (who does not know x) can pass the protocol when b = 0 since then it
holds: z2 = R. Since b is chosen at random, there is 1/2 probability that b = 0 and
thus that the cheating P passes the protocol.

(c) This protocol is used in decoders for Pay-TV access control. The decoder plays the
role of the verifier, while the prover is a smart-card bought by the viewer. Here y
is the card number, which is publicly known and transmitted to the decoder. The
secret x is stored in the smart-card software. The broadcast periodically contains an
instruction to check authenticity of the smart-card, together with the random b to be
used in the next run of the protocol.
Early uses of this protocol in decoders did not generate the commitment r at random
each time but used same r repeatedly (since V did not anyhow have memory enough
to check that r was different each time). Explain how this gave opportunities for
production of pirate cards. (3 p)
Solution: If for two runs of the protocol the same r is used then the same R = r2

(mod N) is transmitted. Thus, the transcripts for the two runs of the protocol would
be: (R,b,z) and (R,b′,z′).
We also know that it holds: z2 = R ·yb (mod N) and z′2 = R ·yb′ (mod N). Thus, we
have:

z2

y
= R = z′2 (mod N)⇒ y = (

z
z′
)2 (mod N)

Thus, x = z
z′ (mod N)

More precisely it holds:
(

z
z′
)2 = yb−b′ (mod N)

Since 2 and (b−b′) are relatively prime using Bezout’s identity we have:

u ·2+ v · (b−b′) = 1⇒ yv(b′−b) = (
s′

s
)ve = y1−ue (mod N)

as a consequence: y = (( z
z′ )

v · yu)2

2. Consider that we have three parties P1, P2 , P3 and each of them has a secret value a = 4,
b = 3 and c = 1 correspondingly. Show how P1, P2 and P3 using the secure multi party
computation protocol for addition (that we have seen in the lectures) based on Shamir’s
Secret Sharing Scheme with t = 1 can compute the sum σ; i.e., fill in the following table.
Consider that we are in Z11. (5 p)

P1 P2 P3

a = 4 a1 a2 a3
b = 3 b1 b2 b3
c = 1 c1 c2 c3

σ = a+b+ c σ1 σ2 σ3
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Solution: Since t = 1 each of the P1;P2;P3 selects a polynomial of degree 1, the only re-
strictions is that each if p1(x) is the polynomial selected by the party P1 then it should hold
p1(0) = a = 4. Similarly for the other two polynomials it should hold: p2(0) = b = 3 and
p3(0) = c = 1. More precisely, lets assume that P1 selects the polynomial: p1(x) = 4+ 2x.
Then, we we have:

p1(1) =4+2 ·1 = 6 = a1

p1(2) =4+2 ·2 = 8 = a2

p1(3) =4+2 ·3 = 10 = a3

Lets assume that P2 selects the polynomial p2(x) = 3+ x. Then, we have:

p2(1) =3+1 = 4 = b1

p2(2) =3+2 = 5 = b2

p2(3) =3+3 = 6 = b3

Lets assume that P3 selects the polynomial p3(x) = 1+ x. Then, we have:

p3(1) =1+1 = 2 = c1

p3(2) =1+2 = 3 = c2

p3(3) =1+3 = 4 = c3

Then, the shares of the sum σ1, σ2 and σ3 can be calculated as follows:

σ1 = a1 +b1 + c1 = 6+4+2 = 12

σ2 = a2 +b2 + c2 = 8+5+3 = 16

σ3 = a3 +b3 + c3 = 10+6+4 = 20

We also have
δ1(0) = ∏

j={2,3},i=1

j
j− i

=
2
1
· 3

2
= 3

δ2(0) = ∏
j={1,3},i=2

j
j− i

=
1

1−2
· 3

1
=−3

δ3(0) = ∏
j={1,2},i=3

j
j− i

=
1

1−3
· 2

2−3
=

1
−2
· 2
−1

= 1

Thus, we have:

σ = σ1 ·δ1(0)+σ2 ·δ2(0)+σ3 ·δ3(0) = 12 ·3+16 · (−3)+20 ·1 = 36−48+20 = 8

Thus, the table filled in looks as follows:
P1 P2 P3

a = 4 6 8 10
b = 3 4 5 6
c = 1 2 3 4
σ = 8 12 16 20
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