CHALMERS — GÖTEBORGS UNIVERSITET

EXAM IN CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

25 April 2019, 08:30 - 12.30

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande av kursansvarig vid dennes besök i skrivsalen.

No extra material is allowed during the exam except of pens and a simple calculator (with cleared memory). No smartphones or other electronic devices are allowed.

Answers must be given in English and should be clearly justified.

Teacher/Examiner: Katerina Mitrokotsa

Questions during exam: Katerina Mitrokotsa, phone 031 772 1040

The exam is divided in four main topics and the total number of points is 50. The grades are:

CTH Grades: $22-30 \rightarrow 3$ $31-39 \rightarrow 4$

40-50→5

GU Grades:

 $22-39 \rightarrow G \quad 40-50 \rightarrow VG$

Good luck!

1 Symmetric Ciphers (14 p)

(a) Let (Enc, Dec) be a cipher such that there exists an algorithm B that given the ciphertext $c \leftarrow Enc(k,m)$ retrieves the least significant bit of the plaintext, i.e. B(c) = LSB(m) for any k. Show that this not semantically secure and compute the advantage of compromising the cipher using B. (4 p)

Hint: Use a security game and describe a successful strategy of the attacker.

- (b) Describe how encryption and decryption works in ECB (Electronic Codebook Block) mode for block ciphers. (1 p)
- (c) Show that ECB (Electronic Codebook Block) mode for block ciphers works is not semantically secure when a message is longer than one block. (4 p)

Hint: Use in your description a security game and a successful strategy of the attacker in the case the messages used in the security game have length two blocks).

(d) We consider Triple DES encryption, in the common form

$$E3_{(K_1,K_2)}(B) = E_{K_1}(D_{K_2}(E_{K_1}(B)))$$

where E_K and D_K denote the standard (single) DES encryption and decryption functions, respectively and $E3_{(K_1,K_2)}$ denotes Triple DES encryption with key (K_1,K_2) . This form of 3DES uses two keys and three operations and achieves 112 bits of security.

A similar construction is 2DES:

$$2DES_{k_1,k_2}(m) = E_{k_1}(E_{k_2}(m))$$

However 2DES does not achieve 112 bits of security, due to the meet-in-the-middle attack.

- 1 Describe the steps of the meet-in-the-middle attack in detail, if necessary use also a figure. (4 p)
- 2 What level of security does 2DES achieve (i.e., how many steps of computation the adversary has to do for the attack) (1 p)?

2 Public Key Encryption (12 p)

- (a) Let $G = \mathbb{Z}_{13}^*$ and $g \in G$. Show that g=6 is a generator of the group G. (2 p)
- (b) Suppose that Alice has a secret value a=3 and Bob has a secret value b=6. Describe how Alice and Bob may establish a secret key using the Diffie-Hellman protocol using the group $G=\mathbb{Z}_{13}^*$ and the generator g=6. (2 p)
- (c) Describe how Eve may perform a man-in-the-middle attack against the Diffie-Hellman exchange protocol used above. (2 p)
- (d) We consider Elgamal encryption using a generator g for p^* for some large prime p. Remainder: Every user chooses a random private key x < p and computes the public key $X = g^x$. To encrypt message m for a user with public key X, the sender chooses a random y < p and computes the encryption $(g^y, m \cdot X^y)$.

Describe how decryption is done. (2 p)

(e) Show that El Gamal encryption is not secure against chosen chiphertext attacks (IND-CCA)(4 p)

3 Data Integrity (12 p)

- (a) Explain what a cryptographic hash function is and the notion of collision resistance. (2 p)
- (b) Describe the birthday paradox and its impact on the security of hash functions. (3 p)
- (c) Suppose H_1 and H_2 are collision resistant hash functions mapping inputs in a set \mathcal{M} to $\{0,1\}^{256}$. Show that the function $H_2(H_1(m))$ for $m \in \mathcal{M}$ is also collision resistant. (3 p) *Hint:* Prove the contra-positive.
- (d) MACs are employed in symmetric key cryptography to guarantee the integrity of a message. Consider the case of designing a MAC scheme that employs a hash function with iterative structure (e.g. uses the Merkle-Damgard iterated construction) and works as follows:

$$MAC(m) = h(K||m||p),$$

where m is the message for which we need to guarantee integrity, K is the symmetric key shared between two communicating parties (e.g. Alice and Bob) and p is padding.

Show that this MAC scheme is not secure against existential forgery (i.e. possible to create a valid MAC for an unknown message). (4 p)

4 Cryptographic Protocols (12 p)

1. Let $\langle g \rangle$ be a group of order n, where n is a large prime. Let x selected uniformly at random from \mathbb{Z}_q be the prover's private key, and let $X = g^x$ bet the prover's public key (the verifier has the prover's public key). Peggy (the prover) and Victor (the verifier) run the following zero-knowledge protocol:

Verifier ${\mathcal V}$	Prover $\mathcal P$
X	x secret key $X = g^{x}$ $r \in \{1, 2, \dots, q - 1\}$ $\leftarrow R$ $R = g^{r}$
$c \in \{1, 2, \dots, q-1\}$ $R \stackrel{?}{=} g^s \cdot X^{-c}$	$ \begin{array}{c} $

- (a) Show that a true Peggy, following the protocol will be identified correctly by Victor. (2 p)
- (b) Can an adversary impersonate Peggy successfully? If yes, what is the corresponding success rate? (2 p)
- (c) Can Victor transfer his knowledge, that indeed Peggy has the secret x, to someone else? Explain why. (2 p)
- 2. Assume that we have five parties P_1, \dots, P_5 and that we tolerate t = 2 corrupted parties in a Shamir threshold secret sharing scheme.

Assume that we work in \mathbb{Z}_{11} and want to share the secret value s = 8.

- Show how we can distribute s among five parties, i.e., compute the shares s_1, \dots, s_5 . Each of the shares s_i is sent to the party P_i $(i \in \{1, \dots, 5\})$ (2 p)
- Assume that someone is given the shares s_3, s_4, s_5 , while someone else is given the shares s_1, s_2 . Which of the two is able to compute the secret s on its own? Show how? (4 p)