CHALMERS — GÖTEBORGS UNIVERSITET

EXAM IN CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

18 January 2019, 08:30 - 12.30

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande av kursansvarig vid dennes besök i skrivsalen.

No extra material is allowed during the exam except of pens and a simple calculator (with cleared memory). No smartphones or other electronic devices are allowed.

Answers must be given in *English* and should be clearly justified.

Teacher/Examiner: Katerina Mitrokotsa

Questions during exam: Katerina Mitrokotsa, phone 031 772 1040

The exam is divided in four main topics and the total number of points is 50 (plus 6 bonus points).

The grades are:

CTH Grades: $22-30 \rightarrow 3$ $31-39 \rightarrow 4$ $40-50 \rightarrow 5$

GU Grades: $22-39 \rightarrow G \quad 40-50 \rightarrow VG$

Good luck!

3 Data Integrity (15 p)

- (a) Bonus points: How do we define a secure MAC (message authentication code)? (3 p). Hint: Give the security game and formal definition.
- (b) Describe how raw CBC-MAC works. (2 p).
- (c) Show that raw CBC-MAC is insecure. (5 p).

 Hint: Describe an existential forgery. Use a security game and a successful strategy of the attacker. Consider that in the challenge phase, a message with length two blocks is used.
- (d) How may we avoid the security problem in raw CBC-MAC? Describe a solution. (2 p).
- (e) Give three advantages of digital signatures in comparison to MACs. (3 p)

4 Cryptographic Protocols (13 p)

1. Let p,q two large prime numbers such that $N=p\cdot q$. Let $s\in\mathbb{Z}_N$ such that gcd(s,N)=1 and it holds $v=s^2\pmod N$. Peggy (the prover) and Victor (the verifier) run the following zero-knowledge protocol:

Verifier (Victor) ${\mathcal V}$		Prover (Peggy) $\mathcal P$
(N, ν)		(N, s, v) s secret key
		pick a random
pick a random	<u>₩</u>	$r \in \{1, 2, \dots, N-1\}$ $w = r^2 \pmod{N}$
$c \in \{0, 1\}$	c	compute
check	<	$z = rs^c \pmod{N}$
$z^2 = wv^c \pmod{N}$		

- (a) What is the probability that a fake Peggy (not having the secret s) to be identified correctly. Justify your answer and explain how we may decrease the success probability of a fake Peggy. (1 p).
- (b) Can Victor transfer his knowledge, that indeed Peggy has the secret x, to someone else? Explain why. (2 p).
- (c) Consider that an attacker (who does not have access to the secret key) can always predict Victor's challenge. Describe how the attacker may always successfully pass the protocol. (3 p).
- 2. Consider that we have three parties P_1, P_2, P_3 and each of them has a secret value a = 1, b = 2 and c = 3 correspondingly. We are using the secure multi party computation (SMPC) protocol for addition (that we have seen in the lectures) based on Shamir's Secret Sharing Scheme with t = 1.
- (a) Show how P_1, P_2 and P_3 can compute the sum $\sigma = a + b + c$, without disclosing the values a, b and c. (4 p)
 - *Hint:* Describe how P_1 , P_2 and P_3 create their shares and distribute them and how finally the sum is computed.
- (b) Consider that P_3 decides not to collaborate with P_1 and P_2 . Can P_1 and P_2 still compute the sum σ ? If yes, justify why and show how. (3 p)