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1 Symmetric Ciphers (16 p)

(a) Let us consider the following symmetric cipher:

E(k,m0) = E(k,m00||m01) = m00||E(k⊕m01)

where m00 and m01 denote the first and second bit of a message m0. Prove that this sym-
metric cipher is not semantically secure. (4 p)

Hint: Use a security game and describe a successful strategy of the attacker.

Solution:

Attacker A Challenger C

k ∈ K

m0,m1

c

m0,m1
D← M

len(m0)= len(m1) c=E(k,mb)

b ←−R{0, 1}

chosen

uniformly at

random

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

Output b′ ∈ {0, 1}
a guess for b

According to the definition a cipher (E,D) is semantically secure (with one time key) if for
any ‘efficient’ adversary, it holds:

P(b′ = b)<
1
2
+negligible

We need to show that A can win the security game (described above):

Let A choose:

m0 = m00||m01 = 0||0 and m1 = m10||m11 = 1||1
If C chooses b = 0, then mb = m0 and c = m00||(k⊕m01) = 0||c0 ⇒ c = 0||c0 then b′ = 0

If C chooses b = 1, then mb = m1 and c = m10||(k⊕m11) = 1||c1 ⇒ c = 1||c1 then b′ = 1

A can output b′ = {first bit of c} as a guess for b.

Then, we have:

|P(W0)−P(W1)|= |1−0|= 1

(b) Let us consider that G : K → {0,1}n is a predictable PRG. Describe an attack that can be
performed against a stream cipher that uses the predictable PRG G . (2 p)

Solution: Let us consider that G is predictable. Let A (adversary) be the algorithm that can
efficiently compute G(s)|i+1 given G(s)|1,...,i

m

c

G(k)

⊕

If f A knows the ciphertext and the beginning of the plaintext ((e.g., a header) then he
can recover the first bits of the PRG as indicated in the figure. Often the headers of some
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encrypted messages in communication protocols are standard and well known. For instance
in the SMTP protocol every message starts with the message ”To:”. Thus, if the adversary
has the ciphertext and knows what are the first bits of the plaintext (i.e., headers). He
can recover the first bits of the PRG used. Since we have the assumption that the PRG is
predicable this implies that given the first bits of a PRG we can predict the last. Thus, the
adversary can recover all the bits of the PRG used e.g., G(k) and thus is able to recover the
plaintext i.e., G(k)⊕ c = m

(c) Consider that the OTP is used to encrypt two different messages m1 and m2 and the corre-
sponding cipher texts are c1 and c2 correspondingly. The same key k is used to encrypt both
messages. Describe an attack (two time pad) that could be performed in order to recover
the plaintexts m1 and m2.

Hint: Consider that the messages m1 and m2 represent messages (in binary form) in a
language (e.g., using ASCII code of each character). Give a concrete example explaining
how the attack could be successful. (2 p).

Solution: Lets assume that the same key is used to encrypt two messages:

c1 = m1⊕ k and c2 = m2⊕ k.

Then we have:

c1⊕ c2 = (m1⊕ k)⊕ (m2⊕ k)

= (m1⊕m2)⊕ (k⊕ k)

= m1⊕m2

If we have m1⊕m2 we can easily recover m1 and m2 More precisely, we can recover m1
and m2 due to the redundancy in English language, since not all combinations of letters are
likely or possible.

Let us consider as example that we have the following language: L= {00100,10011,11100,10100}
If we have m1⊕m2 = 10111 then we can deduce m1 = 00100 and m2 = 10011, since only
by XORing m1 and m2 we get m1⊕m2

(d) Describe how encryption and decryption works in CBC (Cipher Block Chaining) mode
with IV for block ciphers. (1 p)

Let (E,D) be a block cipher.

The CBC block cipher is defined as follows. ECBC(k,m): choose a random IV ∈ {0,1}nt and do:

!"#$⋅%& !"#$⋅%& !"#$⋅%&

'()*& '(+*& '(,*& '(-*&./&

⊕& ⊕&⊕&

!"#$⋅%&

⊕&

0()*& 0(+*& 0(,*& 0(-*&./&

0123456476&

IV: random

 Initialisation Vector

• Each ciphertext-block is chained and XOR-ed to the next plaintext block.

• The ciphertext is longer than the plaintext due to the IV.

For the CBC block cipher the decryption is defined as follows:
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!"#$⋅%& !"#$⋅%& !"#$⋅%&

'()*& '(+*& '(,*& '(-*&

⊕& ⊕&⊕&

!"#$⋅%&

⊕&

.()*& .(+*& .(,*& .(-*&/0&

IV: random

 Initialisation Vector

(e) Bonus points: Give the definition of chosen-plaintext attacks (IND-CPA) for secret key
encryption using a security game. (3 p)

Solution:

Attacker A Challenger C

k ∈ K

b ←−R{0, 1}
if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

for i = 1, . . . q do
choose m̄i ∈ M
learn c̄i

m0,m1 ←−DM
len(m0)= len(m1)

m0,m1

c=E(k,mb)

Q
u

e
ry

 
P

h
a

s
e

C
h

a
ll
e

n
g

e
 

P
h

a
s

e

Output b′ ∈ {0, 1}
a guess for b

m̄i

c̄i=E(k, m̄i)

Definition: A cipher (E,D) is secure under CPA if for any PPT adversary, it holds that:

P(b′ = b)<
1
2
+negligible

(f) Show that CBC (Cipher Block Chaining) mode for block ciphers is not secure against Cho-
sen Plaintext attacks (CPA) when the IV is predictable. (4 p)

Hint: Use in your description a security game and a successful strategy of the attacker in
the case he is able to predict the IV. Solution:

Attacker A Challenger C
k ∈ K

b
R← {0, 1}

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

m0=IV1 ⊕ IV2

pick m1 "= m0 with
len(m1) = len(m0)

m0,m1

c=ECBC(k,mb)

Q
u

e
ry

 
P

h
a

s
e

C
h

a
ll
e

n
g

e
 

P
h

a
s

e

If c = [IV2, c̄2] output b
′ = 0

else, output b′ = 0

m̄

c̄

Choose
m = (0, . . . , 0)︸ ︷︷ ︸

n bits

learn c̄

predictIV(IV1)=IV2

ECBC(k,m0)=[IV2,E(k, (IV1 ⊕ IV2)⊕ IV2)]

=[IV2,E(k, IV1)] = [IV2, c̄2]

ECBC(k,m1)=[IV2,E(k,m1 ⊕ IV2)]

c̄=[IV1,E(k,(0, . . . , 0)⊕IV1)]

=[IV1,E(k, IV1)] = [c̄1, c̄2]

Let W0 be the event that C chooses b = 0, and A outputs b′ = 0.
Let W1 be the event that C chooses b = 1, and A outputs b′ = 0.

Then, it holds: |P(W0)−P(W1)| = |1− 0| = 1
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2 Public Key Encryption (12 p)

(a) Describe how the textbook RSA encryption works (1 p)

Hint: Describe the algorithms with their corresponding input and output.

Solution:

• KeyGen(λ)→ (pk,sk)

(a) generate two distinct λ-bit primes p and q, compute N = pq and Φ(N). Φ denotes
Euler’s phi (or Totient) function. It holds: Φ(N) = Φ(pq) = (p−1)(q−1).

(b) choose an integer e R← ZΦ(N) such that GCD(e,Φ(N)) = 1 and compute its (mod-
ular) inverse d = e−1 mod Φ(N).

(c) set: pk = (N,d) and sk = (N,e)

• Enc(pk,m)→ c : compute c = me mod N

• Dec(sk,m)→m : compute m = cd mod N

(b) Consider an RSA system with modulus N = pq, public key e and private key d. Show that
if an adversary finds out Φ(N) = (p−1)(q−1), she can easily factorise N and thus break
the encryption. (3 p)

Solution: Recall that:

Φ(N) = (p−1)(q−1) = pq− p−q+1 = N− p−q+1

So if the Adversary knows Φ(N), he also knows

p+q = N +1−Φ(N).

But if you know both p ·q = N and p+q = α, it is easy to compute p and q: using q = N/p.
You know p+N/p = α, which gives the ordinary second-degree equation p2−αp+N = 0
to solve for p.

(c) Define the IND-CCA security game (indistinguishability chosen ciphertext attacks) and
show that the textbook RSA encryption scheme is not secure under IND-CCA. (5 p)

Solution: The IND-CCA security game is defined as follows: Definition: A public key

Attacker A Challenger C

KeyGen(λ)→(pk, sk)

b
R←− {0, 1}

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

A can encrypt
polynomially many
messages that he chooses

m0,m1

C
h

a
ll
e
n

g
e
 

P
h

a
s
e

Output b′ ∈ {0, 1}
a guess for b

pk

Q
u

e
ry

 
P

h
a
s

e
 I

c̄i

m̄i m̄i=Dec(sk, c̄i)

Q
u

e
ry

 
P

h
a
s

e
 I
I

c̄i

m̄i
m̄i=Dec(sk, c̄i)

c=Enc(pk,mb)c

for i = 1, . . . q do
choose c̄i ∈ C
learn m̄i

m0,m1
D←− M

len(m0)= len(m1)

for i = 1, . . . q do
choose c̄i ∈ C,
c̄i "= c learn m̄i
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cipher (KeyGen,Enc,Dec) is secure under CCA if for any ’efficient’ adversary it holds:
P(b′ = b)< 1

2 +negligible

Textbook RSA has the homomorphic property and thus is susceptible to CCA attacks. More
precisely, the following game can be performed:

Attacker A Challenger C

KeyGen(λ)→(pk, sk)

b
R←− {0, 1}

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

A can encrypt
polynomially many
messages that he chooses

m0,m1

C
h

a
ll
e

n
g

e
 

P
h

a
s
e

Output b′ ∈ {0, 1}

pk

Q
u

e
ry

 
P

h
a

s
e
 I

Q
u

e
ry

 
P

h
a

s
e

 I
I

c′

for i = 1, . . . q do
choose c̄i ∈ C
learn m̄i

m0,m1
D←− M

len(m0)= len(m1)

m̄i=Dec(sk, c̄i)

c̄i

m̄i

c′=Enc(pk,mb)·Enc(pk,m′)

= Enc(pk,mb ·m′)

Choose

mb ·m′=Dec(sk, c′)mb ·m′

c c=Enc(pk,mb)

(d) We consider double RSA encryption using a common modulus N and two public keys e1
and e2 with corresponding private keys. Thus, a message m is encrypted first using RSA
encryption with the key e1; the result is encrypted again using key e2. Explain why this
approach does not increase security. (3 p)

Solution: The general argument against double encryption is that it is subject to the meet-
in-the-middle attack, which has time complexity similar to that of a single brute force attack.
In the particular case of RSA encryption, double encryption is also meaningless, since the
double encryption is equivalent to the single RSA encryption with public key e1e2 and
private key d1d2. It is easy to verify this since it holds (me1 (mod N))e2 (mod N) = me1e2

(mod N)
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3 Data Integrity (15 p)

(a) Bonus points: How do we define a secure MAC (message authentication code)? (3 p).

Hint: Give the security game and formal definition.

Solution:

Attacker A
Challenger C

KeyGen(λ)→k

C
h

a
ll
e

n
g

e
 

P
h

a
s

e
Q

u
e

ry
 

P
h

a
s

e
 

mi

b = 1 if Verify(k,m, t)=1 and
(m, t) /∈ {(m1, t1), . . . , (mq, tq)}
b = 0 otherwise

m
D←− M

ti

(m, t)

b

for i = 1, . . . q do
choose mi ∈ M
learn ti

ti=Mac(k,mi)

Definition: A message authentication code (KeyGen, MAC, Verify) is secure, if for any
‘efficient’ adversary A it holds:

P(Challenger outputs 1) is negligible

(b) Describe how raw CBC-MAC works. (2 p).

Solution:

Let F : K ×M →M be a block cipher (PRP) where M = {0,1}n

then the CBC-MAC is defined as follows:

FCBC : K ×M ′→M where M ′ = {0,1}`n
!"#$%&%

'()*⋅+ '()*⋅+ '()*⋅+

,-./ ,-0/ ,-1/ ,-2/

⊕⊕

'()*⋅+

⊕

'(!"*⋅+
3"4

tag

(c) Show that raw CBC-MAC is insecure. (5 p).

Hint: Describe an existential forgery. Use a security game and a successful strategy of the
attacker. Consider that in the challenge phase, a message with length two blocks is used.

Solution:

The attacker may choose the message m′ = m||(t⊕m)

Then, it holds:
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Attacker A
Challenger C

KeyGen(λ)→k

C
h

a
ll
e

n
g

e
 

P
h

a
s

e
Q

u
e

ry
 

P
h

a
s

e
 

m

t

(m′, t)

b

Choose
m′ = m||t⊕m︸ ︷︷ ︸

two blocks

Choose m ∈ M′

learn t
t=FCBC(k,m)

b = 1 if Verify(k,m′, t)=1
and (m′, t) /∈ {(m, t)}
b=0, otherwise

!"#$%&%

'()*⋅+ '()*⋅+

,-./ ,-0/

⊕

   m      t    m   ⊕

tag

FCBC(k,m′) = FCBC(k,FCBC(k,m)︸ ︷︷ ︸
t

⊕(t⊕m)) = FCBC(k, t⊕ (t⊕m)) = FCBC(k,m) = t

Thus, (m′, t) is a valid pair (message, tag). So we have: Verify(k,m′, t) = 1 and (m′, t) /∈
{(m, t)})

So it holds: P(Challenger outputs 1) = 1

(d) How may we avoid the security problem in raw CBC-MAC? Describe a solution. (2 p).

Solution:
A solution to the above attack in the Encrypted CBC-MAC that works as follows. Let F :
K ×M →M be a block cipher (PRP) where M = {0,1}n

then the CBC-MAC is defined as follows:

FECBC : K 2×M ′→M where M ′ = {0,1}`n
!"#$%&%

'()*⋅+ '()*⋅+ '()*⋅+

,-./ ,-0/ ,-1/ ,-2/

⊕⊕

'()*⋅+

⊕

'(!"*⋅+
3"4

If the Block cipher (F) is secure then the encrypted CBC-MAC (FECBC) is also secure!

(e) Give three advantages of digital signatures in comparison to MACs. (3 p)

Solution: Below we describe the main advantages of digital signatures in comparison to MACs.
Any two are sufficient to get three points:

• Simpler key-distribution & key management.
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• Alice needs to sign a message only once to guarantee integrity if she sends a message
to multiple recipients!

• Signatures are publicly verifiable!

• Transferable signatures: Bob can convince a third party that Alice has signed a mes-
sage!

• Non-repudiation: If Alice signs a message she cannot deny she has signed it.

4 Cryptographic Protocols (13 p)

1. Let p,q two large prime numbers such that N = p · q. Let s ∈ ZN such that gcd(s,N) = 1
and it holds v = s2 (mod N). Peggy (the prover) and Victor (the verifier) run the following
zero-knowledge protocol:

Verifier (Victor) V Prover (Peggy) P

(N,v) (N,s,v)
s secret key

pick a random
r ∈ {1,2, . . . ,N−1}

pick a random w←−−−−−−− w = r2 (mod N)

c ∈ {0,1} c−−−−−−−→ compute

check z←−−−−−−− z = rsc (mod N)

z2 = wvc (mod N)

(a) What is the probability that a fake Peggy (not having the secret s) to be identified correctly.
Justify your answer and explain how we may decrease the success probability of a fake
Peggy. (1 p).

Solution: We notice that for c = 0, it holds z = r · s0 (mod N) = r (mod N).

Thus, a fake Peggy not having the secret s can be correctly identified when c = 0 which
happens with probability P(c = 0) = 1

2 .

Thus, the probability of a fake Peggy being successful is dropped to 1
2 .

By running the protocol n times the probability of success for a fake Peggy is (1
2)

n.

(b) Can Victor transfer his knowledge, that indeed Peggy has the secret x, to someone else?
Explain why. (2 p).

Solution: No! V could have produced (w,c,z) by generating c and z at random and com-
puting w = z2v−c (mod N).

(c) Consider that an attacker (who does not have access to the secret key) can always predict
Victor’s challenge. Describe how the attacker may always successfully pass the protocol.
(3 p).

Solution:

In this attack, we consider that the dishonest prover P∗ can predict the challenge that V
(Victor) will send.

P∗ manages to fool V i.e., persuades him that he has the secret s, while in reality he does
not have it.
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Victor

the Verifier

P*

A dishonest prover

v
(N, v)

pick a random r ∈ {1, 2, . . . , N − 1}pick a random

check
compute

c ∈ {0, 1} w∗

z

c

Attack against the 

FS Protocol

w∗ = r2(v−1)c (mod N)

w∗ = r2,

z = r

Victor will send the challenge 

Both hold since

z2 = w∗v0 (mod N) = r2 (mod N)

c
If I can predict      I can fool himc

blue red c = 0 c = 1

w∗ = r2v−1 (mod N)

z2 = (r2v−1)v = r2 (mod N)

z2 = w∗vc (mod N)

z = r

If P* can predict c

2. Consider that we have three parties P1,P2,P3 and each of them has a secret value a = 1, b = 2
and c = 3 correspondingly. We are using the secure multi party computation (SMPC) protocol
for addition (that we have seen in the lectures) based on Shamir’s Secret Sharing Scheme with
t = 1.

(a) Show how P1,P2 and P3 can compute the sum σ = a+b+ c, without disclosing the values
a, b and c. (4 p)

Hint: Describe how P1,P2 and P3 create their shares and distribute them and how finally the
sum is computed.

Solution: Since t = 1 each of the P1,P2,P3 selects a polynomial of degree 1, the only
restrictions is that each if p1(x) is the polynomial selected by the party P1 then it should
hold p1(0) = a = 1. Similarly for the other two polynomials it should hold: p2(0) = b = 2
and p3(0) = c = 3.

More precisely, lets assume that P1 selects the polynomial: p1(x) = 1+ 2x. Then, we we
have:

p1(1) = 1+2 ·1 = 3 = a1

p1(2) = 1+2 ·2 = 5 = a2

p1(3) = 1+2 ·3 = 7 = a3

Lets assume that P2 selects the polynomial p2(x) = 2+ x. Then, we have:

p2(1) = 2+1 = 3 = b1

p2(2) = 2+2 = 4 = b2

p2(3) = 2+3 = 5 = b3

Lets assume that P3selectsthepolynomialp3(x) = 3+ x. Then, we have:

p3(1) = 3+1 = 4 = c1

p3(2) = 3+2 = 5 = c2

p3(3) = 3+3 = 6 = c3

Then, the shares of the sum σ1, σ2 and σ3 can be calculated as follows:

σ1 = a1 +b1 + c1 = 3+3+4 = 10
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σ2 = a2 +b2 + c2 = 5+4+5 = 14

σ3 = a3 +b3 + c3 = 7+5+6 = 18

Thus, the table filled in looks as follows:

P1 P2 P3

a = 1 3 5 7
b = 2 3 4 5
c = 3 4 5 6
σ = a+b+ c 10 14 18

We show how to compute

δi(0) = ∏
j={1,2,3}\{i}

j
j− i

for i = {1,2,3}

It holds:
δ1(0) =

2
2−1

· 3
3−1

= 2 · 3
2
= 3

δ2(0) =
1

1−2
· 3

3−2
=−3

δ3(0) =
1

1−3
· 2

2−3
=

1
−2
· 2
−1

= 1

Thus, we have:

σ = δ1(0) ·σ1 +δ2(0) ·σ2 +δ3(0) ·σ3

= 3 ·10−3 ·14+1 ·18 = 30−42+18 = 6

Indeed this is correct since σ = a+b+ c = 6.

(b) Consider that P3 decides not to collaborate with P1 and P2. Can P1 and P2 still compute the
sum σ? If yes, justify why and show how. (3 p)

Solution: Indeed since t = 1 two parties are sufficient in order to compute σ.

Since only P1 and P2 collaborate we compute

δi(0) = ∏
j={1,2}\{i}

j
j− i

for i = {1,2}

.

It holds:

δ1(0) =
2

2−1
= 2

δ2(0) =
1

1−2
=−1

Thus, we have: σ = δ1(0) ·σ1 +δ2(0) ·σ2 = 2 ·10−1 ·14 = 6

Indeed this is correct since σ = a+b+ c = 6.
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