CHALMERS — GÖTEBORGS UNIVERSITET

EXAM IN CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

05 April 2018, 08:30 - 12.30

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande av kursansvarig vid dennes besök i skrivsalen. No extra material is allowed during the exam except of pens and a simple calculator (with cleared memory). No smartphones or other electronic devices are allowed. Answers must be given in *English* and should be clearly justified.

Teacher/Examiner: Katerina Mitrokotsa **Questions during exam:** Katerina Mitrokotsa, phone 031 772 1040

The exam is divided in four main topics and the total number of points is 50. The grades are:

CTH Grades: $22-30 \rightarrow 3$ $31-39 \rightarrow 4$ $40-50 \rightarrow 5$ GU Grades: $22-39 \rightarrow G$ $40-50 \rightarrow VG$

Good luck!

1 Symmetric Ciphers (14 p)

- (a) Suppose G: K→ {0,1}ⁿ is a pseudorandom generator (PRG). Let us denote for k ∈ K G(k) = g₁, g₂, g₃,..., g_n where g_i denotes the i th bit of G(k) for k ∈ K. We know that for this PRG it holds: g₁⊕g₂⊕...⊕g_n = 1 for all k ∈ K. Is G predicable? If yes show why. (2 p)
- (b) Let us consider that $\mathcal{G} : \mathcal{K} \to \{0,1\}^n$ is a predictable PRG. Describe an attack that can be performed against a stream cipher that uses the predictable PRG \mathcal{G} . (3 p)
- (c) Let us consider the following symmetric cipher:

 $E(k,m_0) = E(k,m_{00}||m_{01}) = m_{00}||E(k \oplus m_{01})|$

where m_{00} and m_{01} denote the first and second bit of a message m_0 . Prove that this symmetric cipher is not semantically secure. (5 p)

Hint: Use a security game and describe a successful strategy of the attacker.

(d) Prove that the One Time Pad (OTP) is semantically secure (for one time key). (4 p)

Hint: use the standard game between a challenger and an adversary.

2 Public Key Encryption (12 p)

- (a) Let $G = \mathbb{Z}_{13}^*$ and $g \in G$. Show that g=6 is a generator of the group G. (2 p)
- (b) Suppose that Alice has a secret value a = 3 and Bob has a secret value b = 6. Describe how Alice and Bob may establish a secret key using the Diffie-Hellman protocol using the group $G = \mathbb{Z}_{13}^*$ and the generator g = 6. (2 p)
- (c) Describe how Eve may perform a man-in-the-middle attack against the Diffie-Hellman exchange protocol used above. (2 p)
- (d) Describe how the RSA encryption works (2 p)

Hint: Describe the algorithms with their corresponding input and output.

(e) Define the IND-CPA security game (indistinguishability chosen plaintext attacks) and show that the RSA encryption scheme is not secure under IND-CPA. (4 p)

3 Data Integrity (15 p)

- (a) How can we sign and how can we verify a signed message using textbook RSA? (2 p)
- (b) Bob has received from Alice two documents signed with textbook RSA (m1; s1) and (m2; s2). What problem does this cause and how it can be avoided? (2 p) *Hint:* Can Bob generate a new signed message?
- (c) Explain what a cryptographic hash function is and the notion of collision resistance. (2 p)
- (d) Describe the birthday paradox and its impact on the security of hash functions. (3 p)
- (e) Suppose H₁ and H₂ are collision resistant hash functions mapping inputs in a set M to {0,1}²⁵⁶. Show that the function H₂(H₁(m)) for m ∈ M is also collision resistant. (3 p) *Hint:* Prove the contra-positive.

(f) We consider the possibility of using SHA-1 or MD5 for authentication as follows. Bob authenticates message *m* for Alice by computing h(K||m||p) where *h* is the hash function, *K* is the secret key shared between Alice and Bob, and *p* is padding. Show that this system has the (unwanted) property that the Adversary can authenticate certain messages not sent by Bob. (3 p)

4 Cryptographic Protocols (9 p)

1. Let p,q two large prime numbers such that $N = p \cdot q$. Let $s \in \mathbb{Z}_N$ such that gcd(s,N) = 1 and it holds $v = s^2 \pmod{N}$.

Peggy (the prover) and Victor (the verifier) run the following zero-knowledge protocol:

Verifier (Victor) \mathcal{V}		Prover (Peggy) \mathcal{P}
(N, v)		(N, s, v) s secret key pick a random
pick a random	<i>₩</i>	$r \in \{1, 2, \dots, N-1\}$ $w = r^2 \pmod{N}$
$c\in\{0,1\}$	$\xrightarrow{c} \longrightarrow$	compute
check	< ^z	$z = rs^c \pmod{N}$
$z^2 = wv^c \pmod{N}$		

- (a) Show that a true Peggy, following the protocol will be identified correctly by Victor. (1 p)
- (b) What is the probability that a fake Peggy (not having the secret *s*) to be identified correctly. Justify your answer and explain how we may decrease the success probability of a fake Peggy. (2 p)
- (c) Peggy (the prover) happens to use the same *w* in two different executions of the protocol. Can Victor (the verifier) learn anything about *s*? If yes show how. (2 p)
- 2. Assume that we have five parties P_1, \dots, P_5 and that we tolerate t = 2 corrupted parties in a Shamir threshold secret sharing scheme. Assume that we work in \mathbb{Z}_{11} and want to share the secret value s = 6.
 - Show how we can distribute *s* among five parties, *i.e.*, compute the shares s_1, \dots, s_5 . Each of the shares s_i is sent to the party P_i ($i \in \{1, \dots, 5\}$) (2 p)
 - Assume that someone is given the shares s_3, s_4, s_5 . Is it possible for her to compute the secret *s*? Show how. (2 p)