CHALMERS — GÖTEBORGS UNIVERSITET

EXAM IN **CRYPTOGRAPHY**

TDA352 (Chalmers) - DIT250 (GU)

05 April 2018, 08:30 – 12.30

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande av kursansvarig vid dennes besök i skrivsalen. No extra material is allowed during the exam except of pens and a simple calculator (with cleared memory). No smartphones or other electronic devices are allowed. Answers must be given in *English* and should be clearly justified.

Teacher/Examiner: Katerina Mitrokotsa Questions during exam: Katerina Mitrokotsa, phone 031 772 1040

The exam is divided in four main topics and the total number of points is 50. The grades are:

CTH Grades: $22-30 \rightarrow 3$ $31-39 \rightarrow 4$ $40-50 \rightarrow 5$ GU Grades: $22-39 \rightarrow G$ 40-50 $\rightarrow VG$

Good luck!

1 Symmetric Ciphers (14 p)

- (a) Suppose $\mathcal{G}: \mathcal{K} \to \{0,1\}^n$ is a pseudorandom generator (PRG). Let us denote for $k \in \mathcal{K}$ $G(k) = g_1, g_2, g_3, \ldots, g_n$ where g_i denotes the *i*−*th* bit of $G(k)$ for $k \in \mathcal{K}$. We know that for this PRG it holds: $g_1 \oplus g_2 \oplus \ldots \oplus g_n = 1$ for all $k \in \mathcal{K}$. Is G predicable? If yes show why. (2 p)
- (b) Let us consider that $G : \mathcal{K} \to \{0,1\}^n$ is a predictable PRG. Describe an attack that can be performed against a stream cipher that uses the predictable PRG *G*. (3 p)
- (c) Let us consider the following symmetric cipher:

$$
E(k,m_0) = E(k,m_{00}||m_{01}) = m_{00}||E(k \oplus m_{01})
$$

where m_{00} and m_{01} denote the first and second bit of a message m_0 . Prove that this symmetric cipher is not semantically secure. (5 p)

Hint: Use a security game and describe a successful strategy of the attacker.

(d) Prove that the One Time Pad (OTP) is semantically secure (for one time key). (4 p)

Hint: use the standard game between a challenger and an adversary.

2 Public Key Encryption (12 p)

- (a) Let $G = \mathbb{Z}_{13}^*$ and $g \in G$. Show that g=6 is a generator of the group G. (2 p)
- (b) Suppose that Alice has a secret value $a = 3$ and Bob has a secret value $b = 6$. Describe how Alice and Bob may establish a secret key using the Diffie-Hellman protocol using the group $G = \mathbb{Z}_{13}^*$ and the generator $g = 6$. (2 p)
- (c) Describe how Eve may perform a man-in-the-middle attack against the Diffie-Hellman exchange protocol used above. (2 p)
- (d) Describe how the RSA encryption works $(2 p)$

Hint: Describe the algorithms with their corresponding input and output.

(e) Define the IND-CPA security game (indistinguishability chosen plaintext attacks) and show that the RSA encryption scheme is not secure under IND-CPA. (4 p)

3 Data Integrity (15 p)

- (a) How can we sign and how can we verify a signed message using textbook RSA? $(2 p)$
- (b) Bob has received from Alice two documents signed with textbook RSA (m1; s1) and (m2; s2). What problem does this cause and how it can be avoided? $(2 p)$ *Hint:* Can Bob generate a new signed message?
- (c) Explain what a cryptographic hash function is and the notion of collision resistance. $(2 p)$
- (d) Describe the birthday paradox and its impact on the security of hash functions. $(3 p)$
- (e) Suppose H_1 and H_2 are collision resistant hash functions mapping inputs in a set M to $\{0,1\}^{256}$. Show that the function $H_2(H_1(m))$ for $m \in \mathcal{M}$ is also collision resistant. (3 p) *Hint:* Prove the contra-positive.

(f) We consider the possibility of using SHA-1 or MD5 for authentication as follows. Bob authenticates message *m* for Alice by computing $h(K||m||p)$ where *h* is the hash function, *K* is the secret key shared between Alice and Bob, and *p* is padding. Show that this system has the (unwanted) property that the Adversary can authenticate certain messages not sent by Bob. $(3 p)$

4 Cryptographic Protocols (9 p)

1. Let *p*, *q* two large prime numbers such that $N = p \cdot q$. Let $s \in \mathbb{Z}_N$ such that $gcd(s, N) = 1$ and it holds $v = s^2 \pmod{N}$.

Peggy (the prover) and Victor (the verifier) run the following zero-knowledge protocol:

- (a) Show that a true Peggy, following the protocol will be identified correctly by Victor. (1 p)
- (b) What is the probability that a fake Peggy (not having the secret *s*) to be identified correctly. Justify your answer and explain how we may decrease the success probability of a fake Peggy. (2 p)
- (c) Peggy (the prover) happens to use the same *w* in two different executions of the protocol. Can Victor (the verifier) learn anything about *s*? If yes show how. (2 p)
- 2. Assume that we have five parties P_1, \dots, P_5 and that we tolerate $t = 2$ corrupted parties in a Shamir threshold secret sharing scheme. Assume that we work in \mathbb{Z}_{11} and want to share the secret value $s = 6$.
	- Show how we can distribute *s* among five parties, *i.e.*, compute the shares s_1, \dots, s_5 . Each of the shares s_i is sent to the party P_i ($i \in \{1, \dots, 5\}$) (2 p)
	- Assume that someone is given the shares s_3 , s_4 , s_5 . Is it possible for her to compute the secret *s*? Show how. (2 p)