CHALMERS — GÖTEBORGS UNIVERSITET

EXAM IN CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

12 January 2018, 08:30 - 12.30

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas efter godkännande av kursansvarig vid dennes besök i skrivsalen.

No extra material is allowed during the exam except of pens and a simple calculator (with cleared memory). No smartphones or other electronic devices are allowed.

Answers must be given in English and should be clearly justified.

Teacher/Examiner: Katerina Mitrokotsa

Questions during exam: Katerina Mitrokotsa, phone 031 772 1040

The exam is divided in four main topics and the total number of points is 50 (plus 6 *bonus points*).

The grades are:

CTH Grades: $22-30 \rightarrow 3$ $31-39 \rightarrow 4$ $40-50 \rightarrow 5$

GU Grades: $22-39 \rightarrow G \quad 40-50 \rightarrow VG$

Good luck!

1 Symmetric Ciphers (9 p)

- (a) Describe in simple words how we may perform encryption and decryption using stream ciphers. (2 p)
- (b) Describe how we may get a pseudorandom generator (PRG) from a pseudorandom function (PRF). (2 p)
- (c) Describe how encryption and decryption works in ECB (Electronic Codebook Block) mode for block ciphers. (1 p)
- (d) Show that ECB (Electronic Codebook Block) mode for block ciphers works is not semantically secure when a message is longer than one block. (4 p)

Hint: Use in your description a security game and a successful strategy of the attacker in the case the messages used in the security game have length two blocks).

2 Public Key Encryption (11 p)

- (a) Describe how the El Gamal encryption scheme works. (2 p) *Hint:* Describe the algorithms with their corresponding input and output.
- (b) What does the discrete log problem state? (2 p)
- (c) Bonus points: Give the definition of chosen-chiphertext attacks (IND-CCA) for public key encryption using a security game. (3 p)
- (d) Show that El Gamal encryption is not secure against chosen chiphertext attacks (IND-CCA) (4 p)

Hint: Use a security game and a successful strategy of the attacker.

3 Data Integrity (18 p)

- (a) Describe the textbook RSA signature scheme. (2 p) *Hint:* Describe the algorithms with their corresponding input and output.
- (b) Show that textbook RSA signatures have the homomorphic property. (2 p)
- (c) Bonus points: How do we define an existential forgery in digital signatures? (3 p) Hint: Give the security game and formal definition.
- (d) Describe an existential forgery against RSA signatures. (5 p)
 Hint: Describe an existential forgery that relies on their homomorphic property. Use a security game and a successful strategy of the attacker.
- (e) How may we avoid this forgery? Describe a solution and explain why in this case the forgery is not possible. (3 p)
- (f) Give three advantages of digital signatures in comparison to MACs (message authentication codes). (3 p)

4 Cryptographic Protocols (18 p)

(a) Let $\langle g \rangle$ be a group of order n, where n is a large prime. Let selected uniformly at random from \mathbb{Z}_q be a prover's private key, and let $X = g^x$ bet the prover's public key (the verifier has the prover's public key). Peggy (the prover) and Victor (the verifier) run the following zero-knowledge protocol:

Verifier ${\cal V}$	$\textbf{Prover} \; \mathscr{P}$
X	x secret key $X = g^{x}$ $r \in \{1, 2,, q - 1\}$ $\leftarrow R = g^{r}$
$c \in \{1, 2, \dots, q-1\}$ $R \stackrel{?}{=} g^s \cdot X^{-c}$	$\xrightarrow{c} \longrightarrow s = (r + c \cdot x) \bmod q$

- i. Show that a true Peggy, following the protocol will be identified correctly by Victor. (2 p)
- ii. Can Victor transfer his knowledge, that indeed Peggy has the secret *x*, to someone else? Explain why. (2 p)
- iii. Peggy (the prover) happens to use the same R in two different executions of the protocol. Can Victor (the verifier) learn anything about x? If yes show how. (3 p)
- (b) Consider that we have three parties P_1, P_2, P_3 and each of them has a secret value a = 3, b = 5 and c = 2 correspondingly. We are using the secure multi party computation (SMPC) protocol for addition (that we have seen in the lectures) based on Shamir's Secret Sharing Scheme with t = 1.
 - i. Show how P_1, P_2 and P_3 can distribute shares of their secrets a, b, c to each other and compute the shares of the sum $\sigma = a + b + c$ *i.e.*, fill in the following table. (3 p)

	P_1	P_2	P_3
a = 3	a_1	a_2	a_3
b = 5	b_1	b_2	b_3
c = 2	c_1	c_2	c_3
$\sigma = a + b + c$	σ_1	σ_2	σ_3

- ii. Show how P_1, P_2, P_3 using the shares σ_1, σ_2 and σ_3 , can compute the sum σ . (4 p)
- iii. Consider that P_3 decides not to announce his share σ_3 and thus P_1 and P_2 collaborate announcing σ_1 and σ_2 . Is it still possible to compute the sum σ ? If yes, justify why and show how. (4 p)