
CHALMERS — GÖTEBORGS UNIVERSITET

EXAM IN
CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

12 January 2018, 08:30 – 12.30
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Answers must be given in English and should be clearly justified.

Teacher/Examiner: Katerina Mitrokotsa
Questions during exam: Katerina Mitrokotsa, phone 031 772 1040
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Good luck!
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1 Symmetric Ciphers (9 p)

(a) Describe in simple words how we may perform encryption and decryption using stream
ciphers. (2 p)

Solution: Let G : {0,1}n→{0,1}` with `� n be a secure pseudorandom generator. Then,
in order to encrypt a message m with a key k ∈ {0,1}n with a stream cipher we perform:
Enc(m,k) = m⊕G(k) = c and in order to decrypt Dec(c,k) = c⊕G(k) = m.

(b) Describe how we may get a pseudorandom generator (PRG) from a pseudorandom function
(PRF). (2 p)

Solution: Let F : K×{0,1}n→{0,1}n be a secure PRF. Let us define G : K→{0,1}nt as:
G(k) = F(k,0)||F(k,1)||F(k,2)||...||F(k, t) then G is a secure PRG.

(c) Describe how encryption and decryption works in ECB (Electronic Codebook Block) mode
for block ciphers. (1 p)

Solution: In ECB a message is split into blocks. Each plaintext block is encrypted using
the encryption algorithm of the block cipher and the same key. To decrypt a message, the
message is splitted into blocks and each block is decrypted using the decryption algorithm
of the block cipher and the same secret key.

(d) Show that ECB (Electronic Codebook Block) mode for block ciphers works is not seman-
tically secure when a message is longer than one block. (4 p)

Hint: Use in your description a security game and a successful strategy of the attacker in
the case the messages used in the security game have length two blocks).

Solution:
Attacker A Challenger C

k ∈ Klen(m0)= len(m1)

b ←−R{0, 1}

chosen

uniformly at

random

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

Output b′ ∈ {0, 1}
a guess for b

m0 =

two blocks︷ ︸︸ ︷
Hello World

m1 = Hello Hello

c1||c2=EECB(k,mb)

Let W0 be the event that C chooses b = 0, and A outputs b′ = 0. Let W1 be the event that C
chooses b = 1, and A outputs b′ = 0.

When C chooses b = 0, since m0 = Hello World it holds c1 6= c2 then b′ = 0

When C chooses b = 1, since m1 = Hello Hello it holds c1 = c2 then b′ = 1.

A can output b′ = 0 when c1 6= c2 and b′ = 1 when c1 = c2.

Then, we have: |P(W0)−P(W1)|= |1−0|= 1

Thus, ECB is not semantically secure since the advantage of the adversary is non-negligible.

2 Public Key Encryption (11 p)

(a) Describe how the El Gamal encryption scheme works. (2 p)

Hint: Describe the algorithms with their corresponding input and output.
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Solution:

The El Gamal encryption is composed of the following algorithms.

• KeyGen(λ)→ (pk,sk) :

(a) generate a description of a cyclic group G =< g > of order q (that is a λ-bits long
integer)

(b) choose a random value x ∈ {1,2, . . . ,q−1}, and compute h = gx

(c) set: pk = (G,g,q,h) and sk = (x)

• Enc(pk,m)→ c (function from G to G)

(a) pick a random r ∈ {1,2, . . . ,q−1} and compute c1 = gr

(b) compute c2 = m ·hr ∈G, the ciphertext is c = (c1,c2)

• Dec(sk,c)→m (function from G to G)

(a) compute k = cx
1

(b) decrypt m = c2k−1 = c2c−x
1

(b) What does the discrete log problem state? (2 p)

Solution: Given a cyclic group G, with generator g (G =< g >) and a random element
h ∈ G, compute x ∈ {0,1, . . . ,ord(G)} such that gx = h.

In simpler words:

Consider the function: x→ gx.
The discrete log is the inverse function: gx→ x. It can be denoted as: Dlogg(gx) = x

(c) Bonus points: Give the definition of chosen-chiphertext attacks (IND-CCA) for public key
encryption using a security game. (3 p)

Attacker A Challenger C

KeyGen(λ)→(pk, sk)

b
R←− {0, 1}

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

A can encrypt
polynomially many
messages that he chooses

m0,m1

C
h

a
ll
e
n

g
e
 

P
h

a
s
e

Output b′ ∈ {0, 1}
a guess for b

pk

Q
u

e
ry

 
P

h
a
s
e
 I

c̄i

m̄i m̄i=Dec(sk, c̄i)

Q
u

e
ry

 
P

h
a
s
e
 I
I

c̄i

m̄i
m̄i=Dec(sk, c̄i)

c=Enc(pk,mb)c

for i = 1, . . . q do
choose c̄i ∈ C
learn m̄i

m0,m1
D←− M

len(m0)= len(m1)

for i = 1, . . . q do
choose c̄i ∈ C,
c̄i "= c learn m̄i

A public key cipher (KeyGen,Enc,Dec) is secure under CCA if for any ’efficient’ adver-
sary it holds: P(b′ = b)< 1

2 +negligible

(d) Show that El Gamal encryption is not secure against chosen chiphertext attacks (IND-CCA)
(4 p)

Solution:
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Attacker A Challenger C

KeyGen(λ)→(pk, sk)

b
R←− {0, 1}

if b=0, c is the encryption of m0
if b=1, c is the encryption of m1

A can encrypt
polynomially many
messages that he chooses

m0,m1

C
h

a
ll

e
n

g
e

 
P

h
a

s
e

Output b′ ∈ {0, 1}

pk
Q

u
e

ry
 

P
h

a
s

e
 I

Q
u

e
ry

 
P

h
a

s
e

 I
I

c′

for i = 1, . . . q do
choose c̄i ∈ C
learn m̄i

m0,m1
D←− M

len(m0)= len(m1)

m̄i=Dec(sk, c̄i)

c̄i

m̄i

c′=Enc(pk,mb)·Enc(pk,m′)

= Enc(pk,mb ·m′)

Choose

mb ·m′=Dec(sk, c′)mb ·m′

c c=Enc(pk,mb)

The attacker knows m′ so he can get mb·m′
m′ = mb!

Let W0 be the event that C chooses b = 0 and A outputs b′ = 0.

Let W1 be the event that C chooses b = 1 and A outputs b′ = 0.

Then we have: |P(W0)−P(W1)|= |1−0|= 1.

3 Data Integrity (18 p)

(a) Describe the textbook RSA signature scheme. (2 p)

Hint: Describe the algorithms with their corresponding input and output.

Solution: The RSA signature scheme is composed of three algorithms KeyGen, Sign, Ver-
ify. More precisely, it holds:

• KeyGen(λ)→ (pk,sk)

(a) generate two distinct λ-bit primes p and q, compute N = pq and Φ(N), where
Φ(N) = (p−1)(q−1).

(b) choose an integer e R← ZΦ(N) such that GCD(e,Φ(N)) = 1 and compute its (mod-
ular) inverse d = e−1 mod Φ(N).

(c) set: pk = (N,e) and sk = (N,d)

• Sign(sk,m)→ σ : compute md (mod N) = σ

• Verify(pk,m)→ 1/0 : outputs 1 if and only if σe (mod N)
?
= m

(b) Show that textbook RSA signatures have the homomorphic property. (2 p)

Solution:

Let us sign two messages, m1 and m2 with textbook RSA (and the same key):

Sign(sk,m1) = md
1 (mod N)

Sign(sk,m2) = md
2 (mod N)

where p,q, primes N = pq and e ?← ZΦ(N), GCD(e,Φ(N)) = 1, d = e−1 (mod Phi(N))

Then it holds:
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Sign(sk,m1) ·Sign(sk,m2) = (md
1 (mod N))(md

2 (mod N))

= (m1 ·m2)
d (mod N) = Sign(sk,m1 ·m2).

We have shown that RSA signatures have the homomorphic property i.e., having the signa-
ture of two messages you can get the signature of their product without the secret key!

(c) Bonus points: How do we define an existential forgery in digital signatures? (3 p)

Hint: give the security game and formal definition.

Solution:

Let us consider the following security game.

Attacker A Challenger C

C
h

a
ll
e
n

g
e
 

P
h

a
s
e

Q
u

e
ry

 
P

h
a
s
e
 mi

σi=Sign(sk,mi)
for i = 1, . . . q do
choose mi learn σi

m
D←− M

m /∈ {m1, . . . ,mq}

σi

(m,σ)

KeyGen(λ)→(pk, sk)pk

b = 1 if Verify(pk,m, σ)=1
and m /∈ {m1, . . . ,mq}
b = 0 otherwiseb

A public signature scheme (KeyGen, Sign, Verify) is secure, if for any efficient adversary
A it holds: P(Challenger outputs 1) is negligible

(d) Describe an existential forgery against RSA signatures. (5 p)

Hint: an existential forgery that relies on their homomorphic property.

An existential forgery against RSA signatures can be described with the following game.

Attacker A
Challenger C

C
h

a
ll

e
n

g
e

 
P

h
a

s
e

Q
u

e
ry

 
P

h
a

s
e

 

b = 1 if Verify(pk,m, σ)=1
and m /∈ {m1,m2}
b = 0 otherwise

σ1, σ2

(m, σ)

b

KeyGen(λ)→(pk, sk)

Choose m1,m2

learn σ1, σ2 σ2=Sign(sk,m2)

m = m1 ·m2

σ = σ1 · σ2 =
Sign(sk,m1) · Sign(sk,m2) =
Sign(sk,m1 ·m2)

m1,m2

σ1=Sign(sk,m1)

pk

The attacker A is able to create a valid pair of a message m and a corresponding signature σ,
using the homomorphic property of the RSA signature scheme and thus successfully create
a forgery, i.e., P(Challenger outputs 1) = 1

(e) How may we avoid this forgery? Describe a solution and explain why in this case the
forgery is not possible. (3 p)

In order to avoid this forgery, insead of signing a message m, we sign the hash of the
message H(m).
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Below we show why by signing the hash of the message the homomorphic property of the
RSA signature does not work any more and thus we cannot perform the existential forgery.

Sign(sk,H(m1)) ·Sign(sk,H(m2)) = H(m1)
d ·H(m2)

d =

(
H(m1) ·H(m2)

)d

6=
(

H(m1 ·m2)

)d

= Sign(sk,H(m1 ·m2))

(f) Give two advantages of digital signatures in comparison to MACs (message authentication
codes). (3 p)

Solution: Below we describe the main advantages of digital signatures in comparison to
MACs. Any two are sufficient to get three points:

• Simpler key-distribution & key management.

• Alice needs to sign a message only once to guarantee integrity if she sends a message
to multiple recipients!

• Signatures are publicly verifiable!

• Transferable signatures: Bob can convince a third party that Alice has signed a mes-
sage!

• Non-repudiation: If Alice signs a message she cannot deny she has signed it.

4 Cryptographic Protocols (18 p)

(a) Let 〈g〉 be a group of order q, where q is a large prime. Let x selected uniformly at
random from Zq be a prover’s private key, and let X = gx be the prover’s public key
(the verifier has the prover’s public key). Peggy (the prover) and Victor (the verifier)
run the following zero-knowledge protocol:

Verifier V Prover P

x secret key
X X = gx

r ∈ {1,2, . . . ,q−1}
R←−−−−−−− R = gr

c ∈ {1,2, . . . ,q−1} c−−−−−−−→
R ?
= gs ·X−c s←−−−−−−− s = (r+ c · x) mod q

i. Show that a true Peggy, following the protocol will be identified correctly by
Victor. (2 p)
Solution: It holds:

gs ·X−c = g(r+c·x) · (gx)−c = gr = R.

So a true Peggy that follows the protocol will be identified correctly by Victor.
ii. Can Victor transfer his knowledge, that indeed Peggy has the secret x, to someone

else? Explain why. (2 p)
Solution:
No! V could have produced (R,c,s) by generating c and s at random and com-
puting R = gsX−c.
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iii. Peggy (the prover) happens to use the same R in two different executions of the
protocol. Can Victor (the verifier) learn anything about x? If yes, show how. (3
p)
Solution: Yes, by using the equation: R = gs ·X−c = gs′ ·X−c′

Indeed it holds:
R = gs ·X−c = gs′ ·X−c′ ⇔
gs · (gx)−c = gs′ · (gx′)−c′ ⇔
s+ x(−c) = s′+ x(−c′) mod q⇔ x = s−s′

c−c′ mod q

(b) Consider that we have three parties P1,P2,P3 and each of them has a secret value a= 3,
b = 5 and c = 2 correspondingly. We are using the secure multi party computation
(SMPC) protocol for addition (that we have seen in the lectures) based on Shamir’s
Secret Sharing Scheme with t = 1.

i. Show how P1,P2 and P3 can distribute shares of their secrets a,b,c to each other
and compute the shares of the sum σ = a+ b+ c i.e., fill in the following table.
(3 p)

P1 P2 P3

a = 3 a1 a2 a3
b = 5 b1 b2 b3
c = 2 c1 c2 c3

σ = a+b+ c σ1 σ2 σ3
Solution: Since t = 1 each of the P1,P2,P3 selects a polynomial of degree 1, the
only restrictions is that each if p1(x) is the polynomial by the party P1 then it
should hold p1(0) = 3. Similarly for the other two polynomials it should hold:
p2(0) = 5 and p3(0) = 2.
More precisely, lets assume that P1 selects the polynomial: p1(x) = 3+2x. Then,
we we have:

p1(1) = 3+2 ·1 = 5 = a1

p1(2) = 3+2 ·2 = 7 = a2

p1(3) = 3+2 ·3 = 9 = a3

Lets assume that P2 selects the polynomial p2(x) = 5− x. Then, we have:

p2(1) = 5−1 = 4 = b1

p2(2) = 5−2 = 3 = b2

p2(3) = 5−3 = 2 = b3

Lets assume that P3selectsthepolynomialp3(x) = 2+ x. Then, we have:

p3(1) = 2+1 = 3 = c1

p3(2) = 2+2 = 4 = c2

p3(3) = 2+3 = 5 = c3

Then, the shares of the sum σ1, σ2 and σ3 can be calculated as follows:

σ1 = a1 +b1 + c1 = 12

σ2 = a2 +b2 + c2 = 14

σ3 = a3 +b3 + c3 = 16

Thus, the table filled in looks as follows:
P1 P2 P3

a = 3 5 7 9
b = 5 4 3 2
c = 2 3 4 5
σ = a+b+ c 12 14 16

7



ii. Show how P1,P2,P3 using the shares σ1,σ2 and σ3, can compute the sum σ. (4
p)
Solution: First, we show how to compute

δi(0) = ∏
j={1,2,3}\{i}

j
j− i

for i = {1,2,3}

It holds:
δ1(0) =

2
2−1

· 3
3−1

= 2 · 3
2
= 3

δ2(0) =
1

1−2
· 3

3−2
=−3

δ3(0) =
1

1−3
· 2

2−3
=

1
−2
· 2
−1

= 1

Thus, we have:

σ = δ1(0) ·σ1 +δ2(0) ·σ2 +δ3(0) ·σ3

= 3 ·12−3 ·14+1 ·16 = 36−42+16 = 10

Indeed this is correct since σ = a+b+ c = 10.
iii. Consider that P3 decides not to announce his share σ3 and thus P1 and P2 collab-

orate announcing σ1 and σ2. Is it still possible to compute the sum σ? If yes,
justify why and show how. (4 p)
Solution: Indeed since t = 1 two parties are sufficient in order to compute σ.
Since only P1 and P2 collaborate we compute

δi(0) = ∏
j={1,2}\{i}

j
j− i

for i = {1,2}

.
It holds:

δ1(0) =
2

2−1
= 2

δ2(0) =
1

1−2
=−1

Thus, we have: σ = δ1(0) ·σ1 +δ2(0) ·σ2 = 2 ·12−1 ·14 = 10
Indeed this is correct since σ = a+b+ c = 10.
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