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No extra material is allowed during the exam except for pens and a simple calculator
(not smartphones). No other electronic devices allowed. Your answers in the exam
must be written in plaintext English. Your language skills will not be graded (but
of course we cannot grade your answer if we do not understand it), so try to give
clear answers. You can draw diagrams to explain concepts like security games,
cryptographic protocols or simple ciphers modes of operation. In any case, your
thoughts and ways of reasoning must be clearly understood.

Teacher: Elena Pagnin
Examiner: Aikaterini Mitrokotsa
Questions during the exam: Elena Pagnin, phone: 072 9681552
Inspection of exam: See web page for announcement.

The exam has 4 topics and some bonus questions to gain extra points.
The total number of points is 100 points (+ 8 bonus points).
Grades are :
CTH Grades: 50-64 → 3, 65-89 → 4, 90 or above → 5
GU Grades: 50-89 → G, 90 or above → VG

Good luck!
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Symmetric Ciphers (20p)

1. Let (E,D) be a secure block cipher. Describe the CBC mode of operation (encryp-
tion and decryption). (8p)

In CBC (Cipher Block Chaining) mode, the message M is divided in blocks {mi}
of the same length. (1p) A random initialization vector IV is chosen to encrypt M ,
and each block is encrypted sequentially with E and the same key sk. (2p) The IV
is attached at the beginning of the ciphertext. (1p) If we denote with ci the i-th
encrypted block, we have that

c0 = E(sk, IV ⊕m0), ci = E(sk, ci−1 ⊕mi) (2p)

and
m0 = D(sk,m0)⊕ IV, mi = D(sk, ci)⊕ ci−1 (2p)

2. Show that the One Time Pad (OTP) cipher is malleable, i.e., that and adversary can
change the ciphertexts so that it decrypts to a different message. (7p)

The OTP cipher does not achieve message integrity, since the ciphertexts are in-
tentionally malleable. For instance, given c = E(k,m) = k ⊕m (2p), an adversary
could substitute c with c′ = c ⊕ a, where a ∈ {0, 1}n. (3p) Now the adversary can
predict what entries of c have been affected by the change, and thus what entries of
the original message m have been tampered, since D(k, c′) = m ⊕ a. (2p) This is
attack is particularly harmful if the adversary has some knowledge on the plaintext
m (e.g., it contains the amount of money to be transferred).

3. Let (E,D) be a correct cipher. Write the formula for correct decryption in the
encryption schemes below.
(Hint: your solution should look like D′((k1, k2), c) = D(k1, c⊕ k1)⊕ k2 ).

(a) E′((k1, k2),m) = E(k1,m)⊕ k2 ⊕ k1. (2p)

D′((k1, k2), c) = D(k1, c⊕ k2 ⊕ k1) (2p)

(b) E′((k1, k2, k3),m) = E(k3,E(k2,E(k1,m))). (3p)

D′((k1, k2, k3), c) = D(k1,D(k2,D(k3, c))) (3p)

Public Key Encryption (30p)

4. This exercise is about RSA encryption. You are given two prime numbers p = 11
and q = 17, an RSA modulus N = p · q = 187, and an encryption exponent e = 3.

(a) Compute the RSA decryption exponent d. (7p)

For how RSA is defined, the decryption exponent d is the inverse of e mod-
ulus ϕ(N) (1p), where ϕ(·) is Euler’s totient function. (1p) In this case we have
ϕ(N) = ϕ(p) ·ϕ(q) = (p−1)(q−1) = (11−1)(17−1) = 160 (2p), since p and q
are co-prime. To compute d we use the Extended Euclidean Algorithm between
ϕ(N) = 160 and the encryption exponent e = 3: (1p)

160 = 3(53) +1
3 = 1(3) +0
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From the second-last row we see that 1 = 160+3(−53). If we read the equation
mod 160 we directly get that the inverse of e = 3 mod 160 is −53 = 107
mod 160 = d.(2p).

(b) Encrypt the message m = 100 using RSA with the values given above. (7p)

In order to encrypt using RSA we need to compute c = me mod N . (3p)
That is 1003 in Z187. The first two modular multiplications give 100 · 100 = 89
mod 187, and 89 · 100 = 111 mod 187. (3p) So the encrypted message is
c = 111. (1p)

5. Give a pseudocode for Fermát primality test. (8p)
(Hint: Fermát’s primality test is based on Fermát little theorem that states: ap = a
mod p if p is a prime number (and a ∈ Zp \ {0}))
We can write the Fermat primality test in algorithm form as:

Inputs: n, k; where n is the number we want to test for primality, (1p)
n > 3; and k is a parameter that determines the number of times to test
for primality (accuracy) (1p)
Output: non-prime if n is composite, probably prime otherwise (2p)

for i = 1, 2, . . . , k do
pick a randomly in the range {2, 3, . . . , n− 1}
compute GCD(a, n) = d,

if d 6= 1 return non-prime
else compute c = an−1 mod n

if c 6= 1 return non-prime
end if

end if
end for (4p)

6. Use the Chinese Remainder Theorem (CRT) to solve the following system of linear
congruences. (8p){

x = 1 mod 7
x = 3 mod 11

Since 7 and 11 are relative primes, the CRT guarantees that the system admits unique
solution modulus 77 = 11 · 7. (2p) To find it, we compute the coefficients of Bézout
identity (using the Extended Euclidean Algorithm): 11(2) + 7(−3) = 22 − 21 = 1.
(3p) We have x = 1(22) + 3(−21) = −41 = 36 mod 77. (3p).

7. Bonus question: describe the IND-CCA security game (indistinguishability chosen
ciphertext attack) (4 bonus points)

In the IND-CCA security game, the adversary is given the public key of the scheme,
and he can ask for (at most q ∼ poly(λ)) decryptions of messages of his choice
to the challenger. After that, the adversary chooses two messages m0,m1 (of the
same length) and sends them to the challenger. The challenger selects a random bit
b ∈ {0, 1} and returns to the attacker the ciphertext c ← Enc(pk,mb). The adver-
sary then can go through another query pahse, where anyhow he is not allowed to
submit the challenge ciphertext c. The adversary wins the game if he can determine
with non-negligible probability if c is an encryption of m0 or of m1 (i.e., guess the
bit b chosen by the Challenger). (4p)
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Data Integrity (20p)

8. Consider the following signature scheme. The setting is a cyclic group Z∗q , for a large
prime q. Let g be a generator for Z∗q .
The KeyGen algorithm picks a random value sk = x ∈ Z∗q , computes the corre-
sponding public key pk = X = gx ∈ Z∗q , and outputs (pk, sk).
The Sign algorithm takes as input sk and a message m ∈ {0, 1}n, and proceed as
follows. First it computes h = H(m) ∈ Z∗q for some hash function H : {0, 1}n −→ Z∗q .
Secondly, it computes z = xh−1 in Z∗q . Finally, it outputs the signature σ = gz.

(a) Define the correctness property of a signature scheme. (2p)

A signature scheme is said to be correct if Verify(pk,m,Sign(sk,m)) = true
for all possible messages (2p).

(b) What computations should the Verify algorithm perform for the above signa-
ture scheme to be correct? (3p)

In order for the given signature to be correct, the verification algorithm should
perform the following steps. First, compute h = H(m) ∈ Z∗q . (1p) Then return
true if σh = X = pk, (1p) otherwise return false. (1p)

(c) Is it computationally infeasible for an attacker to produce a valid signature for
an arbitrary message m∗, without knowing the secret key x? (5p)

No. (1p) Chosen a message m∗, the attacker can compute H(m∗) = h∗ and
make the signature σ∗ = X(h∗)−1 . (2p) This is computationally feasible since
the evaluation of the hash function H is efficient and computing (h∗)−1 from
h∗ can be done using the Extended Euclidean Algorithm (which is known to be
efficient). (2p).

9. Let 2 < N < 100 be a positive integer such that GCD(N, 3) = 1. Consider the
function h : Z −→ ZN , defined as h(m) = 3m+ 1 mod N .

(a) Is h such that, given a message digest y, it is computationally infeasible to find
an m with h(m) = y? Why? (i.e., is h one-way / pre-image resistant?). (5p)

No, h is not pre-image resistant. (2p) For example, given a digest y ∈ ZN

we can compute a possible pre-imagine as m = (y − 1)3−1 mod N , (2p) where
3−1 denotes the inverse of 3 modulus N (1p) (which exists because, by assump-
tion, N and 3 are coprime).

(b) Is h such that it is computationally infeasible to find two distinct messages
m1,m2 ∈ Z such that h(m1) = h(m2)? Why? (i.e., is h collision-free?). (5p)

No, h is not collision-resistant. (1p) Indeed, for any message m1 ∈ Z we
have that m2 = m1 + N ∈ Z (1p) has the same digest: h(m1) = 3m1 + 1
mod N = 3m1 +3N +1 mod N = 3(m1 +N) + 1 mod N = h(m2) (2p) since
N = 0 mod N . Actually, all the messages of the form m1 + kN for k ∈ Z have
the same digest. (1p)
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Advanced Topics in Cryptography (30p)

10. Consider the following identification protocol based on the discrete logarithm prob-
lem. G =< g > is a cyclic group of prime order q, the prover (called Peggy) has a pri-
vate key x ∈ {1, 2, . . . , q−1} and publishes the corresponding public key h = gx ∈ G.
The purpose of the protocol is to convince the verifier (called Victor) that Peggy
knows the secret value x:

-1- Peggy chooses a random r ∈ {1, 2, . . . , q − 1}, computes R = gr and S = gx−r.
She sends R and S to Victor.

-2- Victor chooses a random challenge bit c ∈ {0, 1}, and sends c to Peggy.

-3- Peggy replies to Victor with the value z = cx− r.

(a) What computations should Victor do in order to check Peggy’s values? (4p)

In order to check Peggy’s values Victor should check that:
(1) R · S = h, since R · S = gr+(x−r) = gx = h, (2p)
(2) either R = gz (if c = 0) (1p) or S = gz (if c = 1) (1p).
This is equivalent to the correctness of the protocol.

(b) Show that if Eve, who does not know Peggy’s secret key x, can predict Victor’s
challenge, than she has probability 1 to pass the identification protocol (i.e., be
accepted by Victor). (6p)
(Hint: for the case c = 1, you can try to swap the role of R and S)

Given that the Eve can predict Victor’s challenge bit c, she can construct R
in such a way that the final answer z will never involve computations with
the secret x. (2p) For instance, if Eve predicts that c = 0, she can pick r at
random, and send R = gr, S = R−1h in message -1-. (1p) If Eve predicts
c = 1, then she needs to exchange R and S, i.e., send S = gr, R = S−1h. (2p)
Her values will always pass Victor’s check: in both cases the reply is z = r. (1p)

(c) Show that if an honest Peggy chooses the same randomness r twice, an honest-
but-curious Victor can retrieve Peggy’s secret x. (6p)

Let (R(1), S(1), c(1), z(1)) indicate the first transcript of the identification pro-
tocol. If Victor, in a subsequent run of the protocol, sees that message -
1-. equals R(1), S(1) (2p), i.e., (R(2), S(2)) = (R(1), S(1)), then he can send
as challenge c(2) = c(1) ⊕ 1 (the flipped challenge) (2p), and retrieve x =
(c(1) − c(2))(z(1) − z(2)). (2p)

11. Consider Shamir Secret Sharing Scheme. Assume that there are n = 4 parties (P1, P2,
P3, P4), that the system tolerates t = 3 corrupted parties, and that all computations
are done in Z13.

(a) Imagine you are the Dealer. Explain how you would share your secret value a
among the four parties (note that no explicit computation is required for this
step, just a formal description of how the scheme works). (4p)

In order to share the secret a ∈ Z13 using the Shamir Secret Sharing Scheme,
the Dealer needs to first select a random polynomial f(x) ∈ Z13[x] satisfying
f(0) = a and 3 = t = deg(f). (3p) In other words, the Dealer generates f(x) as
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f(x) = a+ r1x+ r2x
2 + r + 3x3, with r1, r2, r3 ∈ Z13 chosen at random. Then

the Dealer computes f on the points i ∈ {1, 2, 3, 4} and gives to party Pi the
share ai = f(i). (1p)

(b) Now, imagine you are P1 and your share is a1 = 5. Suppose you also learn the
other parties’ shares: a2 = 12, a3 = 7, a4 = 10. Can you recover the secret value
a shared among the four parties? Show how or explain why not. (10p)

Yes, (3p) party P1 can compute the secret value a using Lagrange interpola-
tion on the shares. Formally, a =

∑4
i=1 aiδ

{1,2,3,4}
i (0), where δ{1,2,3,4}i (0) denote

the Lagrange interpolation polynomials (evaluated at 0) (2p) and defined as:
δ
{1,2,3,4}
i (0) =

∏
j∈{1,2,3,4}r{i} j(j − i)−1 mod 13. (1p)

δ
{1,2,3,4}
1 (0) = 2(2− 1)−1 · 3(3− 1)−1 · 4(4− 1)−1 = 4 mod 13

δ
{1,2,3,4}
2 (0) = 1(1− 2)−1 · 3(3− 2)−1 · 4(4− 2)−1 = 7 mod 13

δ
{1,2,3,4}
3 (0) = 1(1− 3)−1 · 2(2− 3)−1 · 4(4− 3)−1 = 4 mod 13

δ
{1,2,3,4}
4 (0) = 1(1− 4)−1 · 2(2− 4)−1 · 3(3− 4)−1 = 12 mod 13
For each δi: (0.5p) for correct computation. Total (2p).

Substituting the numbers in the Largange interpolation formula, we get:
5 · 4 + 12 · 7 + 7 · 4 + 10 · 12 = 5 mod 13. Thus a = 5. (2p).

12. Bonus question: describe textbook Diffie-Hellman key exchange. (4 bonus points)

The global public parameter is the (description of a) cyclic group G = 〈g〉 of or-
der q (note that G is known to both A and B). (1p)
The Diffie-Hellman key exchange protocol works as follows.

-1- A chooses a random a ∈ {1, · · · , q − 1}, computes A = ga in G and sends
it to B.

-2- B chooses a random b ∈ {1, · · · , q − 1}, computes B = gb in G and sends
it to A. (1p)

-3- A computes the shared secret key Ba = sk = gab.

-4- B computes the shared secret key Ab = sk = gba. (2p)
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