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Symmetric Ciphers (20p)

1. Let (E,D) be a secure block cipher.

(a)

Describe the ECB mode of operation (encryption and decryption). (5p)

In ECB (Electronic Codebook) mode, the message M is divided into blocks
{m;} of the same length. (1p) Each block m; is encrypted separately (possibly
in a parallel fashion) using E and the key sk (the same for all the messages).
If we denote by ¢; the i-th encrypted block, we can describe ECB as:

c¢i = E(sk,m;) (2p), m; = D(sk,¢;) (2p)

Show that ECB is not semantically secure if the length of the message is at
least two blocks. (9p)

(Hint: start by describing the semantic security game and show a successful
attack strategy in the case M = (mg, m1) is a two-block message).

In the semantic security game, the adversary has to submit to the challenger
two distinct messages of the same length. (1p) The challenger then returns
an encryption of one of the two messages. (1p) The adversary wins the game
if he (correctly) guesses which is the message corresponding to the received
ciphertext. (2p)

Let the adversary choose the two-block messages My = (m,m), My = (m,m)
with m # 7, (2p) and submit them to the challenger. Let C' = (c1, ¢2) denote
the ciphertext returned by the challenger, which is an encryption of either My or
M;. If ¢; = ¢, the adversary outputs ' = 0 as a guess that the challenger chose
to encrypt the message My. (1p) This guess is correct, since ECB encryption
is deterministic, i.e., identical blocks result in identical ciphertexts. (1p) In
case ¢ # co, the adversary outputs b’ = 1, since M; has distinct blocks by
construction. (1p) This proves that ECB is not semantic secure.
Bonus question: Give the definition of a secure Pseudo-Random Generator.
(3 bonus points)

A function G : {0,1}' — {0,1}" with | < n, is a secure PseudoRandom
Generator if for every efficient statistical test 7, it holds that

|Prob(7(G(u)) = 1) — Prob(T (G(u)) = 0)| is negligible

for every u A {0,1}™ picked uniformly at random. The statistical test T

1 if G’s output considered not random
outputs 7(x) = 0 otherwise

2. Let (E,D) be a correct cipher. Write the formula for correct decryption in the
encryption schemes below.
(Hint: your solution should look like D’((k1, k2),¢) = D(k1,c® k1) @ ks ).

(a)

(b)

E'((k1, ks),m) = E(ky, m & ko). (2p)
D/((k1, ks), c) = D(k1, c) & ko (2p)

E/((kl, k’Q), m) = E(kl,m) P ko. (2p)
DI((kh k2)7 C) = D(klv c® k2) (2p>



(C) E/((kl, k‘g),m) = E(kig, E(k‘l,m)) P k. (2p)
D/((k‘l,k'g),c) = D(kl,D(kQ,C@ k‘l)) (212))

Public Key Encryption (30p)

3. Describe the RSA encryption scheme. (7p)

The RSA encryption scheme is made by the three algorithm (KeyGen, Enc, Dec),
defined as follows.

KeyGen(\) — (pk,sk), is the key generation algorithm. Given A, the security
parameter of the scheme, the algorithm does:

1. Generate two, distinct A-bit primes p, ¢; and compute N = pq and ¢(N), where
©(+) denotes Euler Totient function. (1p)

2. Choose a random integer e %l Zy(ny satisfying GCD(e, ¢(N))=1. Compute
d=e"! mod ¢(N). (1p)

3. Set pk = (N,e) and sk = d. (1p) (note: the role of e and d is interchangeable,
as long as Enc takes as input the public value, and Dec the secret one).

Enc(pk,m) — ¢, is the encryption algorithm. It takes as input the public key e and
a message m € Zy(y) and outputs the ciphertext ¢ =m® mod N. (2p)

Dec(sk, ¢) — m is the decryption algorithm. It takes as input the secret key d, and
the ciphertext c; it outputs the message m = ¢? mod N. (2p)

4. This exercise is about the Extended Euclidean Algorithm (and modular inversion).

(a) Use the Extended Euclidean Algorithm to show that 25 and 28 are relatively
prime and to find x,y € Z such that 25z 4+ 28y = 1. (6p)

By running the Euclidean Algorithm on a = 28 and b = 25 one obtains the
Greatest Common Divisor (GCD) between the two numbers as follows: (2p)

28 = 25(1) +3|a = blg) +m
25 = 308) 41| b = ri(g) +r
3 = 1(3) +0|r1 = 1ro (Q3) + 73

The GCD of 28 and 25 is the reminder of the second-last row: ry = 1. Therefore,
the two numbers are relatively prime. (2p)
In order to find x and y such that 25z + 28y = 1 (the linear combinators of
Bézout’s identity) we need to use the Extended Euclidean Algorithm. We start
from the second-last row in the above table, and read the equations “backwards”
in order to obtain 73 = 1 (the GCD) written in terms of a and b (the two given
numbers).

25 = 38 +1 & 1 = 25-28(3)

28 = 25(1) 43 & 3 = 28-125(1)

Substituting the 3 in the first (right-hand-side) equation with the second equa-
tion we get:

1=25—28(3) = 25— 8(28 — 25) = 25(9) + 28(—8).

Thus, x =9 and y = —8. (2p)



(b) Are there many integer solutions x, y to the equation 25x + 28y = 17 Write
them explicitly. (5p)

Yes, (1p) there are infinitely many (countable number of) solutions to the given
equation. More precisely, for any integer ¢ € Z, we can set z; = (9 + 28t) (2p)
and y; = (—8 — 25t), (2p), then all the solutions are described by:

25 - (9 + 28¢) + 28 - (—8 — 25t) = 1.
(c) Compute the inverse of 25 in Z3g and the inverse of 28 in Z3; . (2p)

Reading the equation 25 -9 + 28 - (—8) = 1 modulus 28 we can see that the
inverse of 25 in Zjg is 9. (1p) Similarly, reading the previous equation mod 25
we get: 28(—8) =1 mod 25 that is 2871 = —8 = 17 mod 25. (1p)

(d) How many elements are in Z3g? (2p)
|Z35| = 0(28) = ¢(7) - (2%) = (T— 1) - 2271(2— 1) = 12. (2p)

(e) Bonus question: Write down all the elements in Zsg. (8 bonus points)
Z3g is the group generated by all the invertible elements of Zog, i.e., all the
positive numbers a € {1,2,...,28} that are coprime with 28 (since in this case
the GCD(a,28) = 1 and we can compute the inverses as shown in the points
above of the exercise).

Explicitly, we have Z3q = {1,3,5,9,11,13,15,17, 19, 23, 25, 27}.

5. Describe the Man-in-the-Middle attack against the Diffie-Hellman key-exchange pro-
tocol. (8p)

The Man-in-the-Middle attack is an attack where the adversary (called Eve in the
picture below!) lies in-between Alice and Bob. Eve can see and modify the messages
in the conversation between Alice and Bob. (1p)

Alice Eve Bob
choose | choose
ad{1,2,...,N -1} choose b&{1,2,...,N -1}
cd{1,2,...,N -1}
compute ' ¢ compute
A= g® compute B =g
9 C =g g
A R C N
S C B
compute the secret key compute the secret key

KAC — ICV(Z — gaC
Kop = B =g
(5p)

KAC =% = gac KCB — Cb —_ gbc

At the end of the (tampered) key exchange protocol, Eve managed to create a shared
secret key with Alice (Ko = ¢¢), while Alice believes that K 4¢ is her secret key
shared with Bob. (1p) At the same time, Kcp = ¢” is the shared secret key between
Eve and Bob, who, however, thinks Kcp is the shared secret key between him and
Alice. (1p)

'In the picture, we assume to be working in a cyclic group G =< g > of order N — 1, for example Zy.



Data Integrity (20p)

6. In order to achieve authenticated encryption, i.e., authenticity (and integrity) of
ciphertexts one can combine a MAC (Message Authentication Code) with an En-
cryption scheme in the following three ways:

Encrypt-and-MAC Encrypt-then-MAC MAC-then-Encrypt

N S S B AR =
—— |

‘Encryption‘ ‘MAC‘ v ‘ m H t ‘

Encryption

(a)

e ]
S —

| c L« | | c |

Using the functions Enc(pk, -) and MAC(sk’, ), write the output of the three
schemes above. (6p)
(Hint: your answer is a composition of the above functions. It shall look like:
Enc(pk, MAC(sK/, m)) You can denote the concatenation of two strings with
the symbol ||.)

Encrypt-and-MAC: Enc(pk,m) || MAC(sk’,m). (2p)
Encrypt-then-MAC: Enc(pk,m) || MAC(sk/,c). (2p)
MAC-then-Encrypt: Enc(pk,m || MAC(sk’,m)). (2p)

Write an Authenticated-Decryption algorithm for the Encrypt-and-MAC scheme.
Note that the output of ADec((sk,sk’),c||t) is L if we cannot guarantee the
integrity of the message, otherwise the output is the correct plaintext. (4p)

The Authenticated-Decryption algorithm is defined as follows.
ADec/((sk,sk'),c|[t) :

(1) decrypt Dec(sk, c) — m, (1p)

(3) check if MAC(sk’,m) ==t. (1p)
If the last check fails, it means that MAC(sk’,m) # t, i.e., there is no plain-
text integrity and the algorithm should return L. (1p) Otherwise ADec returns
m < Dec(sk,c). (1p)

7. One fundamental property of hash functions is collision resistance.

(a)

Give the definition of a collision resistant hash function. (3p)

A hash function H : {0,1}" — {0,1}" (with N > n) is said to be collision
resistant if it is hard to find two inputs that hash to the same output (1p).

Formally, we say that it is computationally infeasible to find x,y € {0,1}" such
that  # y and H(x) = H(y). (2p)

What security class do collision resistant hash function belong to?
(e.g. unconditional security, computational security...) (2p)

Collision resistance is a computational security definition (2p), indeed since
the image space of H (the digest) is smaller than its input space, there will
always exist distinct strings on which H has the same image. Security relies on



the fact that it computationally infeasible to determine such strings.

(c) Prove the birthday paradox: for large enough N (where N is the size of the
output of the hash function) after k2 = 2N log(2) trials the probability of find-
ing a collision is at least 1/2. (5p)
(Hints: start by computing the probability of the complementary event, i.e., that
after k trials one has found no collision. Towards the end, you can do the sub-
stitution k* ~ k(k —1), to simplify computations. Additional useful bounds and
formulas: log(1 —x) < —z, >0 i= w)

We want to show that P = Prob( finding a collision in k trials ) > 3 for not so
large values of k. We being by computing the probability of the complementary
event, i.e., 1 — P = Prob( no collision in & trials ), that is the probability that
at every trial we get distinct messages, thus:

1 —P = Prob( no collision in k trials )
_ (Nj;l) . (NJ;Q) (N—gé—1))

By taking the logarithm at both sides of the equation we get:

N—(k—1)

log(l—P) = log(N§1)+log(¥)+'--+log< N
_ 1) g

= log(l—+%)+log(1— %)+ +log (1 - 52)

< —% — % cee— k—&l from the bound given in the hint
_ k—1 i

- = Ei:l N

< —% gk(kz 1)> from the Gaussian sum given in the hint
< —%% from the subsitution given in the hint

Now if we set k2 = 2N log(2), as given in the question, we get:

1 (2N log(2)

N 2
~log(2) = log(2”") = log(}).

Taking the exponential on both sides of the inequality we get: 1 — P < %, thus
P>1 QED. (5p)

Advanced Topics in Cryptography (30p)

8. Describe in your own words (or give the definition of)

(a) The structure of a ¥ (sigma) protocol. (6p)

A Y-protocol has (usually) the following structure:
i. The prover generates a random looking value called commitment (or wit-
ness) and sends it to the verifier. (2p)
ii. The verifier replies with a (random) challenge to the prover. (2p)

iii. The prover performs some computations, based on the challenge and the se-
cret (connected to the statement). The resulting value is sent as a response
to the verifier. (2p)

(b) The three main properties of a Secret Sharing Scheme, with threshold ¢. (6p)

i. (t+1)-correctness: (1p) any t+ 1 parties together can compute the secret
s. (1p)



ii. Privacy: (1p) no single party alone learns anything about the secret s.
(1p)

iii. t-unconditional security: (1p) any subset of ¢ parties cannot recover the
secret s, no matter how much computational power the parties have. (1p)

9. Consider the Mignotte’s Secret Sharing Scheme with the values m; = 5,mqe =
6,m3 ="7,m4 =11, ms5 = 13.

(a)

Imagine you are the Dealer and you want to share the value s = 150. Explain
how you would compute the shares for each of the 5 parties, and compute the
values s;, for 1 =1,2,3,4,5. (6p)

In order to compute the shares using Mignotte’s Secret Sharing Scheme, the
Dealer has to compute: s; = s mod m; for all the parties ¢ € {1,2,3,4,5}.
(1p) Explicitly, we get:

s1 =150 mod 5 =0, (1p)
s9 =150 mod 6 =0, (1p)
s3 =150 mod 7 =3, (1p)
s4 =150 mod 11 =7, (1p)
s5 =150 mod 13 = 7.(1p)

Now assume you hold the three shares s; = 0, so = 4, s5 = 5. You know that
the shares have been generated using Mignotte’s Secret Sharing Scheme with
mi1 = 5,mo = 6,m3 = 7,mq = 11,m5z = 13. Can you reconstruct the secret
value s? If so, compute it, otherwise explain why not. (12p)

Yes, it is possible to reconstruct s from the information given. (1p) The secret
s is the solution (unique modulus mq -mg-ms = 5x6x13 = 390) of the following
linear system of congruences:

=0 mod5
z=4 mod6 (2p)
=25 mod 13

I proceed by finding a solution to the first two equations in the above system:

Bézout Identity
=0 db
{fﬂ mo 5(5) +6(—4) =1 (2p)
z=4 mod6 Found using the EEA

The partial solution is z =4 - (25) +0- (—24) = 100 = 10 mod 30. (2p) Now,
I combine this result with the last equation of the linear system:

Bézout Identity

=10 d 30

{fv mo 13(7) +30(=3) =1 (2p)
z =5 mod 13 Found using the EEA

The final result is x = 10-13-7+5-30- (—3) = 460 = 70 mod 390. (3p)

We observe that since 70 < 143 = my4 * ms, some combinations of two shares
would enable to compute s without the need of a third one. In our case, apply-
ing the CRT on s9, s5 solely, we get s = 70.

(c) Bonus question: For what values of the threshold t, the given m; can be used?

(2 bonus points)



By construction it must hold that 1 < ¢t < n —1 = 4, where n = 5 is the
number of parties involved in the scheme. We have to check for what values of
t € {1,---,4}, both the following conditions hold:

(1) ged(mi,mj)=1foralli,je{1,---,5} withi#j
(2) ms_pgr-- My <My

We can easily see that (1) is satisfied for all the possible choices of 7,5 €
{1,---,5} with i # j. For (2) we need to check for the different values for ¢:

e t =1: 13 =ms5 < mymeo = 30, so this value of ¢ can be used.

o 1 =2: 143 = myms < mimemg = 210, so this value of ¢ can be used.

e ¢t =3: 1001 < 2310, so this value of £ can be used.
t = 4: 6006 < 30030, so this value of ¢ can be used.



