
CHALMERS — GÖTEBORGS UNIVERSITET

CRYPTOGRAPHY

TDA352 (Chalmers) - DIT250 (GU)

12 Jan. 2017, 14:00 - 18:00

No extra material is allowed during the exam except for pens and a simple calculator
(not smartphones). No other electronic devices allowed. Your answers in the exam
must be written in English. Your language skills will not be graded (but of course we
cannot grade your answer if we do not understand it), so try to give clear answers.
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Symmetric Ciphers (20p)

1. Consider the message m = HKPUFCMHY BHDDXZH, and let (E,D) be a substitution
cipher.

(a) Decrypt m using the following (secret) substitution key: (2p)

plain a b c d e f g h i j k l m n o p q r s t u v w x y z

cipher X G P Y H Q Z I R A J S B K T C L U D M V E N W F O

Using the given substitution key we see that the decryption of m is: encrypted
message. (2p)

(b) Can this cipher be broken by someone who has access to m but not to the secret
key? Why? (3p)

No (1p), the ciphertext is too short. (1p) Any message matching the following
pattern is a possible plaintext: (1p)

?1 ?2?3?4?5?6?7 ?1 ?8 ?9 ?1 ?10 ?10 ?11?12 ?1

Other possible decryptions are:
rightward broomer, embroaden lettuce, equilobed terrace.

2. Let (E, D) be a (one-time) semantically secure cipher, where the messages, cipher-
texts and keys are binary strings, e.g., you can think M = C = K = {0, 1}n, with
n ≥ 2. Are the following encryption schemes, derived from (E, D), semantically
secure or not? Explain why (no need for formal proofs, but your motivations should
be well-justified).
Why do we require n ≥ 2? Would n = 1 provide different answers? (1 bonus point)

(a) E′(k,m) = E(k,m)⊕ 1, where 1 denotes the string with all ones. (2p)

(b) E′(k,m) = E(k,m)||RB(m), where RB(m) gives back a random bit of the
input m. (2p)

(c) E′(k,m) = E(k,m)||RB(k), where RB(k) gives back a random bit of the input
k. (2p)

(a) The encryption scheme is semantically secure. The ciphertexts of E′ are simply
the ciphertexts of E flipped. Thus, it is easy to see that any attack against E′

can be turn into an attack against E (which is semantically secure by assump-
tion). (2p)

(b) The encryption scheme is not semantically secure. The adversary could use the
folowing strategy to win the semantic security game. Choose m0 = 0 (the all-0
message) and m1 = 1 (the all-1 message). Return RB(m) as b′, the guess for
the b chosen by the adversary to produce the challenge ciphertext. (2p)

(c) The encryption scheme is semantically secure. Although E′ is leaking one bit of
the key, it does not harm (given that the key is longer than 1 bit, n ≥ 2 (1p)),
since a randomly chosen keys, will have both 0 and 1 bits. Thus, the adversary
cannot retrieve any useful information from RB(k). (2p)

3. Does the OTP (One Time Pad) cipher achieve perfect secrecy? Prove it. (9p)
(Hint: you can start by quickly describing how the OTP cipher works and how per-
fect secrecy is defined).
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Yes, the OTP cipher is perfect secret.

The OTP Cipher (E,D) over the message-space M = {0, 1}n , the keys-pace K =
{0, 1}n and the ciphertext-space C = {0, 1}n (where n is a positive integer), is defined

as follows. For every key k
R← K: E(k, ·) : M −→ C, E(k,m) = m ⊕ k, for any

m ∈M. D(k, ·) : C −→M, D(k, c) = c⊕ k, for any m ∈M. (2p)

The notion of perfect secrecy states that, for all m0,m1 ∈ M such that len(m0) =
len(m1), and for all c ∈ C (1p) it holds that:

Prob[E(k,m0) = c] = Prob[E(k,m1) = c]

where k is chosen uniformly at random from K (k
R← K). (2p)

In order to prove that the OTP cipher has perfect secrecy we need to show that
Prob[E(k,m) = c] is a constant value (the same for all possible messages m ∈ M).
(1p) Now, Prob[E(k,m) = c] is the probability that there exists a key k ∈ K that
encrypts m in the ciphertext c. For how the OTP encryption is defined, there is
only one key that encrypts m in c, namely k = m⊕ c. Therefore,

Prob[E(k,m) = c] = number of keys that encrypt m into c
number of total keys (1p)

= | k∈K :E(k,m)=c |
| K |

= 1
| K | = 1

2n (1p)

By replacing m with m0 and m1 we get that:

Prob[E(k,m0) = c] = Prob[∃ k ∈ K : k⊕m0 = c] =
1

| K |
=

1

2n
= Prob[E(k,m1) = c].

Therefore OTP has perfect secrecy.(2p)

Public Key Encryption (30p)

4. Describe the ElGamal encryption scheme. (6p)
(Hint: write down input, output and behaviour of the algorithms).

The ElGamal encryption scheme is made by the three algorithm (KeyGen, Enc,
Dec), defined as follows.
KeyGen(λ)→ (pk, sk), is the key generation algorithm. It takes as input the secu-
rity parameter λ and generates the description of a cyclic group G =< g > of order q

(where q is a λ-bit long integer). Then it chooses a random value x
R← {1, 2, . . . q−1}

and computes h = gx ∈ G. The output is the secret key sk = x and the public key
pk = (G, g, q, h). (2p)
Enc(pk,m)→ c = (c1, c2), is the encryption algorithm. It takes as input the public
key and a message m ∈ G and outputs the ciphertext c ∈ G×G. As a first step, the

algorithm generates a random value r
R← {1, 2, . . . , q−1} and computes c1 = gr ∈ G.

Then it computes c2 = mhr ∈ G. (2p)
Dec(sk, c)→ m is the encryption algorithm. It takes as input the secret key and a
ciphertext c ∈ G×G. The decryption works as follows. First it computes k = cx1 ∈ G.
Then it computes m = c2k

−1 ∈ G. (2p)

5. Define the IND-CCA security game (indistinguishability chosen ciphertext attack)
and show that the ElGamal encryption scheme is not secure under IND-CCA. (11p)

In the IND-CCA security game, the adversary is given the public key of the scheme,
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and he can ask for (at most q ∼ poly(λ)) decryptions of messages of his choice
to the challenger. After that, the adversary chooses two messages m0,m1 (of the
same length) and sends them to the challenger. The challenger selects a random bit

b
R← {0, 1} and returns to the attacker the ciphertext c← Enc(pk,mb). The adver-

sary then can go through another query pahse, where anyhow he is not allowed to
submit the challenge ciphertext c. The adversary wins the game if he can determine
with non-negligible probability if c is an encryption of m0 or of m1 (i.e., guess the
bit b chosen by the Challenger). (4p)
In what follows, we show a possible strategy for the attacker to win the game (there
are several variants of this attack that are valid). The attacker can skip the first
query phase, and choose two random messages m0,m1 ∈ G such that m0 6= m1, and
send them to the Challenger. Let c denote the received challenge ciphertext. During
the second query phase the Adversary can submit a modification of the challenge
ciphertext, e.g., c′ = (c1, d ·c2), where d 6= 1 is an (of course invertible) element in G.
The plaintext m′ returned by the Challenger will then be m′ = d · (c2 · c−x1 ) = d ·mb.
Therefore the attacker can output the guess b′ = 0 for b in case d−1 ·m′ = m0, and
b′ = 1 otherwise. (5p)
Following the above strategy, we can show that the adversary has a non-negligible ad-
vantage in the IND-CCA game. Let Wi denote the probability of the event ẗhe Chal-
lenger selects b = i (i.e., c is an encryption of mi, i ∈ {0, 1}), and the adversary out-
puts as a guess b′ = 0 ”. Then, AdvIND−CCA[A, ElGamal] = |W0−W1| = |1−0| = 1,
which is indeed non-negligibly larger than 1

2 . (2p)

6. Consider the cyclic group Z∗37. If you explain in details the functions / theorems /
theory involved in this exercise you can gain a maximum of (3 bonus points)

(a) How many elements are in Z∗37, i.e., what is the order of the group? (2p)

The order of Z∗37 is ϕ(37), where ϕ denotes Euler’s Phi (totient) function. (1p)
Since 37 is a prime number, we have ϕ(37) = 37− 1 = 36. (1p)

(b) Is Z∗37 a cyclic group? How many generators does it have? (4p)

Yes, Z∗36 is a cyclic group because 37 is a prime number. (1p) The number
of generators corresponds to the number of coprime numbers between 1 and 36,
that is Z∗36 has ϕ(ϕ(37)) generators (1p), more explicitly ϕ(36) = ϕ(22 · 32) =
22−1(2− 1) · 32−1(3− 1) = 12 generators. (2p)

(c) Is 4 a generator of Z∗37? Prove it. (7p)
An element g ∈ Z∗37 is a generator of the group if g36 = 1 in Z∗37 and gi 6= 1
for all i ∈ {1, 2, . . . , 35}. Therefore, in order to check if 4 is a generator we
need to see if 4i 6= 1 in Z∗37 for all i ∈ {1, 2, . . . , 35}. By Lagrange theorem we
know that the order of an element always divides the order of the group. Since
Z∗37 has order 36 = 22 · 32 we only need to check the powers 1, 2, 3, 4, 6, 9, 12, 18
(proper divisors of 36). (2p)
41 = 4 6= 1 mod 37, 42 = 16 6= ±1 mod 37 (thus 4 does not have order 2 or
4), 43 = −10 6= ±1 mod 37 (thus 4 does not have order 3 or 6).
49 = (43)3 = −1000 + 37 ∗ 27 = −1 mod 37 from which we can derive that 4
has order 2 ∗ 9 = 18 (4p) and thus 4 is not a generator of Z∗37. (1p)
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Data Integrity (20p)

7. Describe the RSA digital signature scheme. (10p)
(Hint: write down input, output and behaviour of the algorithms).

The RSA digital signature scheme is made by the three algorithm (KeyGen, Sign,
Verify), defined as follows.

KeyGen(λ) → (pk, sk), is the key generation algorithm. Given λ, the security
parameter of the scheme, the algorithm does:
1. Generate two, distinct λ-bit primes p, q; (1p) and compute N = pq and ϕ(N),
where ϕ(·) denotes Euler Totient function. (1p)

2. Choose a random integer e
R← Zϕ(N) satisfying GCD(e, ϕ(N))=1.(1p) Compute

d = e−1 mod ϕ(N). (1p)
3. Set pk = (N, e) and sk = d. (1p)(note: the role of e and d is interchangeable, as
long as Sign takes as input the secret value, and Verify the public one).

Sign(sk,m)→ σ, is the signing algorithm. It takes as input the secret key d and a
message m ∈ Zϕ(N) and outputs the signature σ = md mod N . (2p)

Verify(pk,m, σ)→ {0, 1} is the verification algorithm. It takes as input the public
key e, a message m and a signature σ; it outputs 1 if the signature is correct (verifies)
and 0 otherwise. (1p) More formally, the verification algorithm checks whether
σe = m mod N . (2p) If the equality holds Verify returns 1, otherwise it returns 0.

8. Let N > 2 be a positive integer. Consider the function h : Z −→ ZN , defined as
h(m) = m mod N . To check if h is a cryptographic hash function we need to assure
that h satisfies (at least) the following three properties:

(2a) Given a message m, the message digest y = h(m) can be computed in an
efficient way.

(2b) Given a message digest y, it is computationally infeasible to find an m with
h(m) = y (in other words, h is a one-way, or pre-image resistant function).

(2c) It is computationally infeasible to find two dinstint messages m1,m2 ∈ Z such
that h(m1) = h(m2) (in this case, the function h is said to be collision-free).

Check if h is a cryptographic hash function, i.e., for each of the properties ((8a),
(8b) and (8c)) show if h satisfies it or not. (10p)

Computing the remainder modulus N of a number m ∈ Z can be done in an ef-
ficient way using, e.g., the Euclidean Algorithm. (2p) Therefore h satisfies property
(8a). (1p)
Property (8b) is obviously not satisfied, (1p) since m = y itself is a possible pre-
image of the digest y. (2p) More formally, for every y ∈ {0, 1, . . . , N − 1} ⊂ Z it
holds that h(y) = y mod N = y. (1p)
From the observation above, it is immediate to see that h is not collision-resistant.
(1p) Indeed, for any message m1 ∈ Z we have that m2 = m1 +N ∈ Z has the same
digest: h(m1) = m1 mod N = m1 + N mod N = h(m2). (2p) Actually, all the
messages of the form m1 + kN have the same digest (the remainder modulus N).

Advanced Topics in Cryptography (30p)

9. Describe in your own words (or give the definition of):

(a) Unconditional and provable security. Also, give at least one example of a cryp-
tosystem in each category. (6p)
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Unconditional security: The cryptosystem cannot be broken even by an adver-
sary with unlimited computational power. (2p) Examples of unconditionally
secure crypto systems are: Shamir’s and Mignotte’s Secret Sharing Scheme.,
the OTP. (1p)

Provable security: It is possible to prove that an attack that breaks the cryp-
tosystem, can be used to solve some well-known problem widely believed to
be (computationally) hard. (2p) Examples of provably secure cryptosystems
are: ElGamal (reduced to the Discrete-Log assumption), RSA (reduced to the
Discrete-Log assumption and the factoring assumption). (1p)

(b) The three main properties of the Fiat-Shamir identification protocol (Complete-
ness, Soundness and Zero-Knowledge). (8p)

Completeness: An (interactive) identification protocol is complete if an honest
prover P succeeds in convincing a honest verifier V that a true statement is
true. (2p)

Soundness: An (interactive) identification protocol is sound if no dishonest
prover P succeeds in convincing an honest verifier V that a false statement is
true. (2p)

Zero-Knowledge: An honest prover P can convince the verifier V of the valid-
ity of a statement without revealing any information beyond the truth of the
statement. In other words, an honest-but-curious verifier is not able to extract
any useful information (e.g. the secret key) from the prover while, at the same
time, the verifier will be convinced that the prover knows the secret. (4p)

10. Consider the Secure Multiparty Computation (SMPC) protocol for addition, based
on the Shamir Secret Sharing Scheme, seen in class. Assume that there are n = 4
parties (P1, P2, P3, P4), that the system tolerates t = 3 corrupted parties, and that
all computations are done in Z13.

(a) Imagine you are P1, and your secret input to the computation is a = 5. Explain
how you would share your secret value a with the other parties and what you
expect to receive from each other party (note that no explicit computation is
required for this step, just a formal description of how the scheme works). (4p)

In order to share the secret a ∈ Z13 using the Shamir Secret Sharing Scheme,
the party P1 needs to first select a random polynomial f(x) ∈ Z13[x] satisfy-
ing f(0) = a and 3 = t = deg(f). (2p) In other words, P1 generates f(x) as

f(x) = a+ r1x+ r2x
2 + r + 3x3 with r1, r2, r3

R← Z13. Then P1 computes f on
the points i ∈ {1, 2, 3, 4} and gives to party Pi the share ai = f(i). (1p) Each
party follows the same procedure, thus P1 receives the shares of each party’s
secret input computed in i = 1, namely b1, c1 and d1. (1p)

(b) Now, imagine you are P1 and hold the table below (which corresponds to your
view of the protocol). Compute the value S = a+b+c+d using the information
contained in the table. (12p)

P1 P2 P3 P4

a = 5 a1 = 5 a2 = 12 a3 = 7 a4 = 10

b =? b1 = 4 ? ? ?

c =? c1 = 12 ? ? ?

d =? d1 = 9 ? ? ?

S s1 = 4 s2 = 6 s3 = 1 s4 = 7
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Party P1 can compute the sum S by using Lagrange interpolation on the partial

sums s1, s2, s3 and s4 in the formula S =
∑4

i=1 s1δ
{1,2,3,4}
i (0), where δ

{1,2,3,4}
i (0)

denote the Lagrange interpolation polynomials (evaluated at 0) (4p) and de-

fined as: δ
{1,2,3,4}
i (0) =

∏
j∈{1,2,3,4}r{i} j(j − i)−1 (here k−1 denotes the inverse

of k modulus 13). (1p)

δ
{1,2,3,4}
1 (0) = 2(2− 1)−1 · 3(3− 1)−1 · 4(4− 1)−1 = 4 mod 13

δ
{1,2,3,4}
2 (0) = 1(1− 2)−1 · 3(3− 2)−1 · 4(4− 2)−1 = 7 mod 13

δ
{1,2,3,4}
3 (0) = 1(1− 3)−1 · 2(2− 3)−1 · 4(4− 3)−1 = 4 mod 13

δ
{1,2,3,4}
4 (0) = 1(1− 4)−1 · 2(2− 4)−1 · 3(3− 4)−1 = 12 mod 13

For each δi: (1p) for correct computation, (0.5p) for using EEA / Bézout iden-
tity to find the inverses in Z13. Total (6p).

Substituting the numbers in the Largange interpolation formula, one gets:
4 · 4 + 6 · 7 + 1 · 4 + 7 · 12 = 3 mod 13. Thus S = 3. (1p).

(c) Bonus question: Looking at the table in point (10b), are you able to determine
what was the polynomial f chosen by P1 to share a? Why? Compute the poly-
nomial f , if possible. (4 bonus points)

Yes, it is possible to retrieve the polynomial f chosen by P1, because table
(10b) contains n = 4 points on which the degree t = 3 polynomial (chosen
by P1 to share the secret input a) is evaluated, and there exists only one de-
gree t polynomial passing on t + 1 = 4 points (1p). It is possible to compute
f(x) ∈ Z13[x] using the Lagrange interpolation on the points f(1) = a1 = 5,
f(2) = a2 = 12 ≡ −1 mod 13, f(3) = a3 = 7, f(4) = a4 = 10, as follows:

f(x) =
4∑

i=1

f(i)δ
{1,2,3,4}
i (x) mod 13

where δ
{1,2,3,4}
i (x) =

∏
j∈{1,2,3,4}r{i}(x − j)(i − j)−1 (1p). By substituting the

numbers in the above expressions we get:

δ
{1,2,3,4}
1 (x) = x−2

1−2 ·
x−3
1−3 ·

x−4
1−4 = 2

(
x3 + (−4− 3− 2)x2 + (6 + 8 + 12)x+ 2

)
= 2x3 + 8x2 + 4 mod 13 (0.5p)

δ
{1,2,3,4}
2 (x) = 7x3 + 9x2 + 3x+ 7 mod 13 (0.5p)

δ
{1,2,3,4}
3 (x) = 6x3 − 3x2 + 6x+ 4 mod 13 (0.5p)

δ
{1,2,3,4}
4 (x) = −2x3 − x2 + 4x− 1 mod 13 (0.5p)

Thus, f(x) = −x3 + x+ 5.
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