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Exam in Cryptography

Wednesday April 6, 2016, 8:30 — 12.30.

Teacher: Katerina Mitrokotsa, phone 076 200 11 68. )
Tilldtna hjilpmedel: Typgodkind riknare. Annan minnestomd riknare fér anvéndas
efter godkénnande av kursansvarig vid dennes besok i skrivsalen.

Allowed aids: Approved calculator. Other calculators with cleared memory may be
used after approval by the responsible teacher.

The exam has 5 problems with a total of 50 points. 22/31/40 points are needed for
grade 3/4/5.

Answers must be given in English and should be clearly justified.

1. Alice uses a block cipher E where both the block size and the key size are 64
bits, but is worried that the key size is too small and thus brute force attacks are

feasible. She therefore decides to use two keys (ko,k;) and encrypt a message m
as follows:

c=Ey(m)®k

Suppose that an adversary gets access to two plaintext/ciphertext pairs (i.e., (m, c)
and (m’,c’) ) and is able to perform a brute-force attack on the original block
cipher E and recover the key in a known plaintext attack.

(a) Show that the adversary can also break Alice’s “improved” cipher and re-
cover her extended key. (2 p)

(b) Does the attack against the “improved” cipher require much more effort
than an attack against the block cipher E? Explain why. (2 pP)

Solution: Suppose Alice has the plaintext/ciphertext pairs (m,c) and (m',c)

from the extended cipher, i.e. ¢ = Ey, @k and ¢/ = Ey,(m') @ k1. By xoring
the two equations we get:

c®c' = Ey,(m) k1 ® Eyy(m') @ k1 = Egy(m) @ By, (m)

This way k) has been eliminated and the adversary can all possible ky and check
for this equation to hold. This is only twice as much computation as an attack

against E alone, so is certainly feasible. Thus, kg is determined and it is easy to
use ¢ = Ey (m) @k to determine ;.

Alice and Bob use a block cipher for encryption and need to choose between two
modes of operation either CBC mode or counter mode.

¢ CBC mode: Here an n block plaintext MyMM; .
n+ 1 block ciphertext CoC;C;.

C= EK(M,'@C,'_l) fori> 0.

..My, is encrypted to an
..Cy where Cj is an initialisation vector and
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e Counter mode: Here an n block plaintext M1M ,M3...Mp is encrypted to an

n block ciphertext C1C2 ... .C, where:
K = Ex(IV|li)
Ci=M;® K;

An adversary is able to intercept and change messages sent between Alice and
Bob. Now consider the following scenarios.

(a) In some messages sent by Bob, it is the case that the last block is a randomly

generated secret key. Decide for the two modes whether the adversary can
corrupt messages sent, SO that Alice receives a message that looks good
after decryption, but contains the wrong key. (2 p)
Solution: For both modes it is the case that the adversary can replace the
last ciphertext block with any other block. When Alice decrypts the mes-
sage all previous blocks will be unchanged and the message looks good; the
Jast block will be corrupt, but since it is random, there is no way for Alice
to discover this.

(b) In some messages sent by Bob, the adversary may know the first block M
and want to replace it by another block A, of his choice, leaving the rest of
the message unchanged. Show that the adversary can achieve this if Counter
mode is used. Do you think he can do it with CBC mode? (4 p)

Solution: The adversary can achieve this if the encryption is in Counter
mode. The encryption of the first block is Cy = M1 @®Ek(IV||1), from which
he can compute Ex (IV||1) = M1 ©C1. He wants to replace C; by C} =A1®
Ek(IV||1) and can easily compute Ci=A10oM ®C,. The other blocks are
not affected by this.

For CBC mode, we have M; = Dg(C1) ® Co. The adversary cannot change
C}, since that would affect Alice’s decryption of C,. Instead he must try to
find C) such that A} = Dk (C1) @ Co. Solving for Cp, We get:
Ch=A1®Dk(C1) =A1OM; @ Co

3. Consider that we are in Z, where p is a large prime and p — 1 has a prime divisor
q. Further, g is a generator for a subgroup of order q of Z,. A community of
users share parameters p, g and g. Typically, p is a 1024 bit number, while g has
only 160 bits. Each user has a private key x <g.

(a) Describe what is each user’s El Gamal public key, how El Gamal encryption
of a message m and decryption of the corresponding ciphertext works and
in which hard problem the security relies on. (3 p)
Solution: Each user has public key X = g* mod p. To encrypt a message
m for this user, the sender chooses a random number y < g and encrypts
the message as (cy,c2) = (g7,m-X”). To decrypt it computes ¢} = g” and
;hen computes % =m-g”g” = m. The security is based on the discrete
og problem i.e., it is hard to com i i
biker ¥ pute the secret key x if you are given the

(b) Show how to compute m? given the encryption of m. (3 p)

Solution: We have that c§ = (m-(g))=m?-(g9)” =mI since g7 =1 (
is a generator of a group of order g). -



(c) Show that El Gamal is not secure against a chosen ciphertext attack. (3 p)

Solution: The attacker could have asked for the decryption of a modified
ciphertext. To see one possibility, we just multiply the equation above by 2
to get 2m = 2¢5 - ¢~ and we see that a suitable choose is ¢’ = (c1,2¢c2). If
we get the plaintext m' back, we know that m’ = 2m, i.e. m=m'/2

4. (a) Describe what does it mean that a public key encryption scheme is seman-
tically secure and provide the definition of the advantage of the adversary.
(4p)

Hint: Use the standard game between a challenger and an adversary.
Solution: In the semantic security game, the adversary A submits two mes-
sages (plaintexts) mg and m, of the same length to the challenger. The chal-
lenger, who possess a secret key &, picks a random b € {0, 1} and returns to
A one ciphertext, ¢ = Enc(k,mj). The game ends with A outputting a guess
b’ for b. A is said to break the semantic security if he can guess the correct
b with non-negligible probability. More formally, let W}, denote the event
that the challenger returns ¢ = Enc(k,my) for b € {0, 1}, the advantage of
A in the semantic security game is defined as Adv(A) = |Prob[A(Wp) =
1] — Prob[A(W}) = 1]|.

(b) We consider RSA encryption. It is often recommended to choose a small
public key exponent to increase efficiency. A common choice is e = 3.
Explain why e =2 is not suitable. (3 p)

Solution: It is required that gcd(e, P(N)) = 1 for the RSA system to work
properly. But ®(N) = (p—1)(g— 1) is an even number so gcd(2,D(N)) =
2. In particular, it would not be possible to choose d withed =1 (mod ®)(N).

(c) We consider double RSA encryption using a common modulus N an two

public keys e and e with corresponding private keys. Thus, a message
m is encrypted first using RSA encryption with the key e;; the result is
encrypted again using key e. Explain why this approach does not increase
security. (3 p)
Solution: The general argument against double encryption is that it is sub-
ject to the meet-in-the-middle attack, which has time complexity similar
to that of a single brute force attack. In the particular case of RSA en-
cryption, double encryption is also meaningless, since the double encryp-
tion is equivalent to the single RSA encryption with public key eje; and
private key didp. It is easy to verify this since it holds (m®! (mod N ))e
(mod N) =m®€2 (mod N)

5. Assume that we have three parties Py, P, and P; and that we tolerate t = 1 cor-
rupted party. Assume that we work in Z;; and each of the parties have a secret
valuea=2,b=4andc=1 correspondingly. The three parties want to compute
the sum ¢ = a + b+ ¢ while keeping their corresponding value secret. Using

Shamir’s secret sharing show how to calculate the sharing of a,b, ¢ and of their
sum G.

More precisely if we denote by a;,a;,as the shares of the secret value a and we
denote similarly the shares of b, ¢ and 6. Then:

(a) Fill in the following table: (5 p)



P|P| B
ay | a2 | a3
by | by | b3
cp | c2 ] c3

G=a+b+c|01|02]|03
Solution: P, chooses polynomial f(x) of degree at most 1 to share d, and

P, and P3 choose correspondingly polynomials g(x) and h(x) to share b and
¢ correspondingly. The chosen polynomials are kept secret by each party.
The only restriction in the choice of the polynomials is that f(0)=a=2,
g(0)=b=4and h(0) =c= 1. Let the chosen polynomials be:

f(x) =2+2xg(x) =4+x and h(x) =1+3x

Then P; computes a; = f(1) =4, @2 = f(2) =6 and a3
sends a to P, and a3 to P3.

Similarly P, computes by = g(1) =35, by =g(2) =6and b3 = g(3)=7and
sends b; to P, and b3 to Ps.

Finally, P3 computers ¢ = h(1) =4, 2= h(2)=Tandc3 = h(3) =10 and
sends ¢ to Py and c2 to Pa.

Thus, P; has shares a;, b; and ¢; and can compute G; = di +b;+ci (mod 11).
Thus we can easily fill the table as follows:

o o8
I
— AN

= f(3) =8 and

PP P
a=2 4 [ 6| 8
b=4 5 16| 7
c=1 4 | 7110
c=a+b+c|13]19]25

(b) We want that P; only learns 6 =7 and nothing about b and c. Show that if
P; makes the hypothesis that b = 3 and ¢ = 2 then this cannot be excluded
from the possible solutions. Pj has the following view:

P PP

a=2 ap |ax | a3
assumesb=3 | by | by | b3
assumesc=2|c1 [ c2 | ¢c3
6=a+b+c |01 |02| 03

where the blue values (i.e., a,a1,a2,a3,b1,¢1,0,01,02,03) denote the val-

ues that P; already knows (you have them if you solve question (a)) This

means that P; does not know only the values: b, ¢, b2, b3, c2,c3. (3 p)

Solution: If we consider that P is corrupted, then he knows b; =g(1) =5

and c; = h(1) =6.

By making the hypothesis that b = g(0) = 3 and ¢ = h(0) = 2.

Then, this would mean that: P; assumes that g'(x) = g(x) where g'(x) =

3 + 2x and similarly that #'(x) = h(x) where A’ (x) = 2 4+ 2x.

Thus, P;’s view can be summarized in the following table:

P ) P;

a=2 a1 =4 a=6 az=28
assumesb=3 | by =5 | by=7 | by=9
assumesc=2 |c;=4 | cb=6 | c,=8
6=a+b+c |061=13{0,=19|03=25
We should note here that b), b}, ¢, and ¢} are incorrect values.




Thus, by computing 65 = a; +b% + ¢, and 05 = a3 + b} + ¢}, he gets 65, = 0,
and o’ = 03. Thus, the hypothesis that b = 3 and ¢ = 2 cannot be excluded
from the possible solutions.

6. (a) Explain briefly the differences between a MAC and a signature. (2 p)

Solution: A MAC is employed in secret key cryptography while a signature
in public key cryptography. A MAC does not provide the non-repudiation

property that the signature provides.
(b) Explain how using the CBC mode of a block cipher E you can construct a
CBC-MAC. 2 p)

Solution: See slide 8 in
http://www.cse.chalmers.se/edu/year/2015/course/TDA352/lectures/

lect06.pdf
We have a block cipher E : K x X — X we get Fgcpc : K2 X X — K The fig-
ure that is given on the slide and describes how the CBC-MAC is calculated

should be provided.
(c) What is the main advantage of a CBC-MAC over a simple MAC? (1 p)

Solution: It is much shorter.
7. We recall the Fiat-Shamir authentication protocol. Let N = p- g, where p and g

are primes. The prover P wants to convince the verifier V that he knows a square-
root of y € Zj,, i.e., a number x such that y = x? € Z},, without revealing x to V.

They use the following protocol. All computations are in Zy.
e P generates a random r, computes R = r2 (mod N) and sends R to V (the

commitment).
e V generates a uniformly random bit b (i.e., b is either 0 or 1 uniformly at
random) and sends it to P (the challenge).

e P responds with z=r-x* (mod N).

(a) What computation will V perform to check P’s values? (2 p)
Solution: V checks if it holds z2 =R-y (mod N).
(b) Discuss how a cheating P, who does not know x, can achieve a probability

of 0.5 of passing the test. (1 p)
Solution: If P does not know x, she can produce good values if she can

predict b. P chooses z at random and

o Ifb=0,setR =2

o Ifb=1setR=2%-y L.
If P’s prediction is right, V will verify her values. If not P has lost. Thus,
someone pretending to be P has 0.5 probability of fooling V, if V chooses b
with equal probabilities.

(c) How can you decrease the success probability of a cheating P, who does not

know x? (1 p)
Solution: By iterating the protocol k times, the probability of a false P being
accepted is reduced to 2%, Thus the soundness error is 27 for k iterations.



(d) P happens to use the same 7 in two executions of the protocol. Can V learn
2

anything about x? If yes what and how? (2 p)
Solution: Yes. Since r is used twice it holds: —;57 s fb—; thus it is possible

to solve for x and disclose the key.



