
CHALMERS TEKNISKA HÖGSKOLA
Datavetenskap
Björn von Sydow INN150/TDA351

Exam in Cryptography

Thursday December 17 2009, 14.00 – 18.00.
Teacher: Björn von Sydow, phone 1040.

Tillåtna hjälpmedel: Typgodkänd räknare. Annan minnestömd räknare får användas
efter godkännande av kursansvarig vid dennes besök i skrivsalen.
Allowed aids: Approved calculator. Other calculators with cleared memory may be
used after approval by the responsible teacher.

The exam has 7 problems with a total of 50 points. 22 points are needed to pass.
Answers must be given in English and should be clearly motivated.

1. A certain cryptographic device contains a linear feedback shift register (LFSR)
of length L bits with secret tap sequence.

(a) How does one make use of this LFSR to construct a stream cipher with
secret keys of length L, i.e. how is a message m encrypted using this cipher?
(2 p)

(b) Assume that an adversary has access to a plaintext/ciphertext pair (m,c)
from this cipher. How many bits long must m be in order for the adversary
to be able to completely determine the tap sequence? Remember to give
motivation for your answer! (3 p)

2. What is a message authentication code (MAC)? Describe the most important
requirements on a MAC and also what it is used for. You do not have to describe
how MAC’s are implemented. (5 p)

3. We consider the Diffie-Hellman key agreement protocol in its original form, i.e.
using a generator g in Z∗p for some big prime p.

(a) Describe how Alice and Bob can agree on a session key using this protocol.
(3 p)

(b) Describe the man-in-the-middle attack against the protocol. (3 p)

(c) To protect against this attack, Diffie-Hellman must be improved in some
way. Such improvements often involve certificates. What is a certificate,
i.e. what information does it contain and who issues it? (2 p)

(d) What does it mean that g is a generator for Z∗p? (2 p)

(e) Formulate the discrete logarithm problem in this setting. (2 p)
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4. Alice and Bob use a block cipher for encryption and need to choose a mode of
operation. Recall the following two modes:

• CBC mode. Here an n block plaintext M1M2M3 . . .Mn is encrypted to an
n+1 block ciphertext C0C1C2 . . .Cn, where C0 is an initialisation vector and
Ci = EK(Mi⊕Ci−1) for i > 0.

• Counter mode. Here an n block plaintext M1M2M3 . . .Mn is encrypted to an
n block ciphertext C1C2 . . .Cn, where

Ki = EK(IV ||i)
Ci = Mi⊕Ki.

An adversary is able to intercept and changes messages sent between Alice and
Bob. Now consider the following scenarios.

(a) In some messages sent by Bob, it is the case that the last block is a randomly
generated secret key. Decide for the two modes whether the adversary can
corrupt messages sent, so that Alice receives a message that looks good
after decryption, but contains the wrong key. (4 p)

(b) In some messages sent by Bob, the adversary may know the first block M1
and want to replace it by another block A1 of his choice, leaving the rest of
the message unchanged. Show that the adversary can achieve this if Counter
mode is use. Do you think he can do it with CBC mode? (5 p)

5. Encryption in RSA-OAEP proceeds as follows. Let (e,N) be the public key and
d the private key of Alice, where the modulus N is an n bit integer. We assume
that message length is fixed to m bits and let k = (n−m)/2. G and H are two
fixed hash functions, with hash values of size m+ k and k bits, respectively.

Here is how to encrypt message M for Alice.

• Pick a random string r of k bits.

• Compute t = (M||0k)⊕G(r), where 0k denotes the bit string consisting of
k zeros.

• Compute u = r⊕H(t) and let s = t||u. This will be an n bit number; if
s≥ N, start from the beginning and pick a new r.

• The encrypted message is c = se mod N.

Describe in detail how Alice decrypts the message. (6 p)

6. We consider protocols where Peggy proves her identity to Victor by giving evi-
dence that she knows a secret x. We have seen the Fiat-Shamir protocol, which is
based on the infeasibility of computing square-roots of composite numbers, and
the Schnorr protocol, based on the difficulty of the discrete log problem. Not sur-
prisingly, one can also base such protocols on the difficulty of the RSA problem.
We will now look at one such protocol, proposed by Guillou and Quisquater.
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The system involves a trusted third party T. Initially, T chooses primes p and q
as in RSA and computes N = p ·q and a RSA key pair (e,d). N and e are made
public and can be used by a whole community of Peggies and Victors. T keeps
the private key d for himself. All computations below are in Z∗N .

Whenever (a new) Peggy wants to use the system, she chooses a public key X ∈
Z∗N (which could be based on her name, email address etc, using some public
way of transforming this to a number in Z∗N). She sends X to T, who computes
Peggy’s secret key x = X−d and sends it to her in some secure way. Peggy then
announces her public key X .

When Peggy wants to identify herself to Victor, the following protocol is used:

1. Commitment: Peggy chooses a random r ∈ Z∗N , computes R = re and sends
R to Victor.

2. Challenge: Victor chooses a random c with 1≤ c≤ e and sends c to Peggy.

3. Response: Peggy computes y = r · xc and sends y to Victor.

Victor now checks that y 6= 0 and R = ye ·Xc; if this holds he believes that the
other party is Peggy.

(a) Show that a true Peggy, following the protocol, will be identified correctly
by Victor. (4 p)

(b) Why does Victor check that y 6= 0? (1 p)

(c) Show that a false Peggy, who does not know x, but correctly guesses c
before she makes her commitment, can arrange to be identified by Victor as
Peggy. (2 p)
Remark: Thus, the security level of the system can be decided by choosing
e suitably. A false Peggy who guesses c has probability 1/e of success.

7. We consider yet another published, flawed protocol for authentication and session
key agreement, the Neuman-Stubblebine protocol. It employs a trusted third
party and runs as follows:

1. A→ B : A,NA
2. B→ T : B,{A,NA,TB}KBT ,NB
3. T → A : {B,NA,KAB,TB}KAT ,{A,KAB,TB}KBT ,NB
4. A→ B : {A,KAB,TB}KBT ,{NB}KAB

The protocol employs both timestamps and nonces. Some remarks:

• Alice initiates the run in message 1, sending her name and a nonce NA to
Bob.

• Bob contacts the trusted third party Trent, forwarding Alice’s information
and adding a nonce NB of his own and a timestamp TB. Part of the message
is encrypted with the key KBT shared by Bob and Trent.

• Trent generates a session key KAB to be used by Alice and Bob and sends to
Alice a message with two encrypted parts, one for Alice and one for Bob,
and Bob’s nonce in the clear. The part encrypted for Bob, {A,KAB,TB}KBT ,
is called the ticket.
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• Alice checks her nonce and forwards the ticket to Bob, together with Bob’s
nonce encrypted with the session key. This last piece convinces Bob both
that the message is fresh and that the sender is Alice.

However, the system is flawed. Assume that keys and nonces have the same sizes
in bits. Show how an adversary, eavesdropping on messages 1 and 2 of the initial
protocol, may intercept and himself send a valid message 4 to Bob, claiming to
be Alice, and thus complete the initial protocol and communicate with Bob using
encryption with a session key that Bob believes he shares with Alice. (6 p)

Remark: The reason for using both nonces and timestamps was that, after run-
ning the above initial protocol, Alice should be able to open many new sessions
with Bob using the same session key, without communicating with Trent, until
the ticket expires. Such repeated authentication uses a separate three-message
protocol:

1. A→ B : {A,KAB,TB}KBT ,N′A
2. B→ A : {N′A}KAB ,N

′
B

3. A→ B : {N′B}KAB
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