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1. (a) Message length is 825 = 200 bits. The period length for an LFSR with size L bits is at

2.

most 2& — 1. To achieve a period of at least 200 bits we must thus choose L > 8. The
LFSR size is also the size of the key (the initial content), so minimum key size is 8.

(b) The adversary can construct the first 40 bits of the message m and thus determine the first
40 bits of the keystream (as b = ¢ @& m). But to completely determine the tap sequence of
an 8 bit LFSR it is enough to know 2 - 8 = 16 consecutive bits of output. So the adversary
can decrypt Alice’s messages.

(a) We can rewrite the two given equations as follows. We swap left and right hand sides in
both equations; in the second we xor both sides with f(K;,R;) to get

R; = Ly
Li = Ri1®f(Ki,R)).

Finally, we replace the last occurrence of R; with L;; ;. The resulting equations show
how to compute L;||R; from L;||R;;. Thus round i is invertible, regardless of f. The
same reasoning holds for all rounds, so no conditions need to be imposed on f (except, of
course, that it takes input and produces output of appropriate sizes).

(b) Decryption is the same operation as encryption except for subkey order, which is reversed
in decryption.

(a) Mallory’s assumption is that Alice’s message is 10x for some integer x. Then we have
¢ = (10m)¢ = 10°m¢, where the computations are in Zy. Mallory can compute 10 and
invert it using the extended Euclidean algorithm to get 10~¢. Finally, he constructs the bid
c-(10)7¢-11¢, which equals (11m)¢, i.e. the encryption of 11m.

(b) Two main ingredients in padding are randomization (to avoid that the same message en-
crypted twice gives the same encryption) and redundancy (so that randomly constructed
ciphertexts are unlikely to be encryptions of a valid message).

(a) The hash function # is collision resistant if it is infeasible to find two different messages
my and my with h(m;) = h(my).

(b) First the message is hashed and then the signature is applied only to the hash value.

(c) A MAC takes as input both a message and a secret key, while a hash function takes only a
message as input.



(d) Because of the birthday attack, collisions for a hash function with hash values of size 2n
bits can be found in O(2") steps. Thus, if overall security should be n bits, corresponding
to O(2") steps for the best known attack, hash values of size 2n gives the desired security.

5. The remainder of the run is as follows:

4. B—>C(T) . {A,NB}KBT.
5. C(T)—)B . {A,NB}KBT.

Note that when receiving message 3, B expects an encrypted value that he will just passonto 7.
He therefore does so, in particular without noticing that what he got back was in fact his nonce
unencrypted.

So, when C intercepts message 4, he can return it unchanged to B, without need to decrypt
and reencrypt anything, as the protocol intends. When B receives the message he follows the
instructions, checks Alice’s identity and the nonce and accepts the run.

6. (a) Following the problem text, the adversary has received m = Ex(x@®Cp) and t = Ex(m®Cp).
But now consider the two-block message x||Cp. The CBC encryption of this message is
m||t, and thus its MAC is 7. So, the adversary can construct this message/MAC pair and
win the game.

(b) If the encryption of message x = x1xp...X, iS c1C2 . ..y, then the MAC is ¢,,. Thus the last
block of the complete ciphertext (including the encryption of the MAC) is thus Ex(c, @
¢n) = E;(0), which is independent of the message.

The consequence is that the MAC becomes useless. Its purpose is to authenticate the
message, ensuring the intended receiver that the message has not been tampered with. But
from just eavesdropping to one MAC:ed message, the adversary can use the last block as
a MAC to any ciphertext he chooses.

7. The formulas for computing the x; show that x; = (x9)> = a”™% = "' = 1, where the last
equality is by Fermat’s theorem. So, if xg # 1, there must be some k < s such that x; # 1
and x,% = Xx;+1 = 1. But this means that x; is a square-root of 1 different from 1. If n is a
prime, the only square-roots of 1 in Z’ are 1 and n — 1, since x> = 1 mod n is equivalent to
(x—1)(x+1) = 0 mod n, which implies x — 1 = 0 mod n or x+ 1 = 0 mod n. Hence we must
have x; =n— 1.



