
Chalmers | Göteborgs Universitet
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Saturday, March 19, 2022, 8:30.

(including example solutions to programming problems)

Robert Krook, tel. 0707 772 409
(Examiner Alejandro Russo, tel. 0729 744 968)

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkänd 24-47 points, Väl godkänd 48-60 points
PhD student: 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes – a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the paper first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– As a recommendation, consider spending around 1h for exercise 1, 1.20h for exercise 2,
and 2hs for exercise 3. However, this is only a recommendation.

– To see your exam: by appointment (send email to Alejandro Russo)

1

Problem 1 (20pt): (A Monad for non-determinism)
A non-determinism program can exhibit different behaviors on different runs even for the same

input. Monads can be used to model all possible results from a non-deterministic computation, and
in this exam, we will see how.

When we have a computation m ::ND a, we should think about it as a computation that might
return many different results of type a due to some source of non-determinism. The source of
non-determinism or how non-determinism gets introduced in programs is not important here.

The computation m >>= f consists of executing m, taking all its possible results (of type a),
and applying each of them to f and collecting all the possible results (of type b) of the yield
computations.

For instance, the following programmodels all the possible outputs of adding two non-deterministic
computations producing integers.

ndSum ::ND Int → ND Int → ND Int
ndSum m1 m2 = do n1 ← m1

n2 ← m2

return (n1 + n2)

Variables n1 and n2 can be seen as representing one of the many possible values that m1 and
m2 might respectively produce due to the presence of non-determinism. Overall, ndSum performs
the sums for all the possible combination of numbers being provided by m1 and m2.

To be more concrete, the following code models two programs that can produce different integers
in a non-deterministic manner.

number1 :: ND Int
number1 = nonDeterminism [1, 42, 100] -- possible numbers are 1,42, and 100.

number2 :: ND Int
number2 = nonDeterminism [2000, 30000, 50000] -- possible numbers are 2000,30000,50000

The primitive nonDeterminism xs models a computation that produces values from the given
list. If we apply ndSum to the programs above, we get the following output:

> ndSum number1 number2

LM {results = [2001,30001,50001,2042,30042,50042,2100,30100,50100]}

Observe that ndSum number1 number2 captures all the possible results of adding two numbers
comming from number1 and number2, respectivelly.

One way to implement the monad ND is by simple considering that each computation returns
a list of all the possible results.

newtype ND a = ND {results :: [a]}

a) Your task is to provide the definition for return and (>>=) for the monad ND . (10p)

Solution:

instance Monad ND where
return x = ND [x]

2

ND [] >>= k = ND []
ND (x : xs)>>= k = ND (results (k x) ++ results (ND xs >>= k))

b) So far, we have been focusing on the proper morphisms of the ND monad (i.e., return and (>>=)).
In this exercise, we introduce the following non-proper morphism:

option ::ND a → ND a → ND a

which takes two non-deterministic computations and returns the computation which models both!
This is an example of how it works:

> option number1 number2

LM {results = [1,42,100,2000,30000,50000]}

Your tasks is to provide an implementation of option, and based on that, give an implementation
of nonDeterminism :: [a]→ ND a. (5p)

Solution:

option ::ND a → ND a → ND a
option (ND xs) (ND ys) = ND (xs ++ ys)

nonDeterminism :: [a]→ ND a
nonDeterminism = foldr1 (λe lm → option e lm) ◦ (map return)

c) Give the instance definition for Functor ND and Applicative ND . Important: your definitions
must not use the monadic interface. (5p)

Solution:

instance Functor ND where
fmap f (ND xs) = ND (map f xs)

instance Applicative ND where
pure x = ND [x]
ND fs < ∗ >ND xs = ND (fs < ∗ > xs)

3

Problem 2 (5pt): (Examples)
The non-deterministic monad enables to write simple and compact code.

a) For instance, the following code produces all possible permutation of a list.

perm :: [a]→ ND [a]
perm [] = return []
perm (x : xs) = do ps ← perm xs

insert x ps

The line ps ← perm xs could be think as ”ps is one of the possible permutations of xs
(perm xs) selected in a non-deterministic manner”, and insert x ps models that x is inserted
into ps in a non-deterministic manner, i.e., in some position of the list ps.

The next invocation of perms shows how it works.

> perm [1,2,3]

LM {results = [[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]]}

Observe that computing all the possible outputs of perm [1, 2, 3] gives the actual permutations
of the list. Your task is to implement the function insert :

insert :: a → [a]→ ND [a]

The next example shows how insert works.

> insert 10 [1,2,3]

LM {results = [[10,1,2,3],[1,10,2,3],[1,2,10,3],[1,2,3,10]]}

Hint: do not forget the function option from the first exercise.

Solution:

insert x [] = return [x]
insert x (y : ys) = option (return (x : y : ys))

(do ls ← insert x ys
return (y : ls))

(5p)

4

Problem 3 (15pt): (Proof)
Prove that your definitions of return and (>>=)) from the first exercise fullfils the monadic laws.

Since ND is defined using a record, you might find useful to assume the following equations when
doing the proofs.

m = ND (results m)
results (ND xs) = xs

a) Prove the left and right identity monadic laws:

-- Left identity
return x >>= f ≡ f x
-- Right identity

m >>= return ≡ m

(5p)

Solution:

-- Left identify

return x >>= k ≡
-- by def. return

ND [x]>>= k ≡
-- by def. bind

ND (results (k x) ++ results (ND []>>= k)) ≡
-- by def. LM []

ND (resutls (k x) ++ (results (ND []))) ≡
-- by def. results

ND (results (k x) ++ []) ≡
-- by def. concat

ND (results (k x)) ≡
-- by def. accessor, i.e., LM (results m) = m

(k x)

-- Right identify
-- Proof: by induction on the number of results.

-- Base case: m = LM []

ND []>>= return ≡
-- by def. ¿¿= on empty lists

ND []

-- Inductive case: m = LM (x:xs)
ND (x : xs)>>= return ≡
-- by def. bind

ND (results (return x) ++ results (ND xs >>= return)) ≡
-- by IH with LM xs ¿¿= return

ND (results (return x) ++ results (ND xs)) ≡
-- by def. results

5

ND (results (return x) ++ xs) ≡
-- by def. return

ND (results (ND [x]) ++ xs) ≡
-- by def. results

ND ([x] ++ xs)
-- by def. concat and lists

ND (x : xs)

b) Prove the associative law:

(m >>= f)>>= g ≡ m >>= (λx → f x >>= g)

Solution:

-- Associativity
-- Proof: by induction on the number of results on m

-- Base case: m = LM []
(ND []>>= f)>>= g ≡
-- by def. bind on empty lists

ND []>>= f ≡
-- by def. bind on empty lists

ND [] ≡
-- by def. bind on empty lists

ND []>>= (λx → f x >>= g)
-- by def. m

m >>= (λx → f x >>= g)

-- Inductive case: m = LM (x:xs)

(ND (x : xs)>>= f)>>= g ≡
-- by def. bind

ND (results (f x) ++ results (ND xs >>= f))>>= g ≡
-- by Aux. lemma (see below)

ND (results (f x >>= g) ++ results ((ND xs >>= f)>>= g)) ≡
-- by IH

ND (results (f x >>= g) ++ results (ND xs >>= (λy → f y >>= g))) ≡
-- by eta-expansion

ND (results ((λy → f y) x >>= g) ++ results (ND xs >>= (λy → f y >>= g))) ≡
-- since y is a fresh variable not appearing into g, we can extend the scope of the lambda

ND (results ((λy → f y >>= g) x) ++ results (ND xs >>= (λy → f y >>= g))) ≡
-- by def. of bind

ND (x : xs)>>= (λy → f y >>= g)

-- Aux. lemma:
ND (results xs ++ results ys)>>= g ≡ ND (results (xs >>= g) ++ results (ys >>= g))

-- Prof: by induction on the number of results in xs.
-- Base case: xs = LM []

6

ND (results (ND []) ++ results ys)>>= g ≡
-- by def. results

ND ([] ++ results ys)>>= g ≡
-- by def. concat

ND (results ys)>>= g ≡
-- by property of results

ys >>= g ≡
-- by property of results

ND (results (ys >>= g))
-- by empty lists

ND ([] ++ results (ys >>= g))
-- by def. results

ND (results (ND []) ++ results (ys >>= g))
-- by def. bind on empty lists

ND (results (ND []>>= g) ++ results (ys >>= g))

-- Inductive case: xs = LM (z:zs)

ND (results (ND (z : zs)) ++ results ys)>>= g ≡
-- by def. results

ND ((z : zs) ++ results ys)>>= g ≡
-- by def. concat

ND (z : (zs ++ results ys))>>= g ≡
-- by def. bind

ND (results (g z) ++ results (ND (zs ++ results ys)>>= g))
-- by def. results

ND (results (g z) ++ results (ND (results (ND zs) ++ results ys)>>= g))
-- by IH

ND (results (g z) ++ results (ND (results (ND zs >>= g) ++ results (ys >>= g))))
-- by property results

ND (results (g z) ++ (results (ND zs >>= g) ++ results (ys >>= g))) ≡
-- by assoc. (++)

ND ((results (g z) ++ results (ND zs >>= g)) ++ results (ys >>= g)) ≡
-- by def. results

ND (results (ND (results (g z) ++ results (ND zs >>= g))) ++ results (ys >>= g)) ≡
-- by def. bind

ND (results (ND (z : zs)>>= g) ++ results (ys >>= g))

(10p)

7

Problem 4 (20pt): (Monad transformer)
We want to obtain a monad transformer for the ND monad. We will call it NDT m, where m

is the underlying monad. NDT m has the following interface:

newtype NDT m a

return :: a → NDT m a
(>>=) ::NDT m a → (a → NDT m b)→ NDT m b
option ::NDT m a → NDT m a → NDT m a

a) Your tasks is to provide an implementation for NDT m a. (5p)

Solution:

newtype NDT m a = MkNDT {unmk ::m [a]}

b) Given the implementation in a), provide a definition for return and (>>=). (5p)

Solution:

instance Monad m ⇒ Monad (NDT m) where
return a = MkNDT (return [a])
(MkNDT m)>>= k = MkNDT $ do results ← m

let lmts = map (unmk ◦ k) results
fmap concat $ sequence lmts

c) Give an implementation in a), provide a definition for option. (5p)

Solution:

option (MkNDT m1) (MkNDT m2) = MkNDT (do ls1 ← m1

ls2 ← m2

return (ls1 ++ ls2))

d) Every monad transformer has a run function, here we will call it runNDT . Your task is to give
its type and implementation. (5p)

runNDT ::NDT m a → ?
runNDT m = ?

Solution:

runMLT ::NDT m a → m [a]
runNDT (MkNDT m) = m

8

