Chalmers | GOTEBORGS UNIVERSITET
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260
Monday, August 26, 2019, ”Maskin”-salar, 14:00-18:00.

Alejandro Russo, tel. 031 772 6156

e The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkéand 24-47 points, Vil godkand 48-60 points
PhD student: 36 points to pass.

e Results: within 21 days.

e Permitted materials (Hjilpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes — a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

e Notes:

— Read through the paper first and plan your time.
— Answers preferably in English, some assistants might not read Swedish.

— If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

— Start each of the questions on a new page.

— The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

— Hand in the summary sheet (if you brought one) with the exam solutions.

— As a recommendation, consider spending around 1h for exercise 1, 1.20h for exercise 2,
and 2hs for exercise 3. However, this is only a recommendation.

— To see your exam: by appointment (send email to Alejandro Russo)

Problem 1: (Optimization)
Consider the following implementation that computes the average on a list of integers.

average :: [Int] — Int
average s = sum xs ‘dw‘ length s

sum | =1l
sum (z:zs) =z + sum zs
length [] =0

length (z:zs) =1+ length zs

This function traverses the list twice, once to compute the sum and another time to compute
the length of it. To reduce the number of passes, we can apply the technique of tupling. This
technique consists of obtaining, by equational reasoning, a function that traverse the list once
while computing two results. In our case, we need to obtain the definition of a function, let’s call
it sumlen :: [Int] — (Int, Int), such that the following equation holds.

sumlen zs = (sum zs, length zs)

Your task is to obtain the definition of sumlen by means of equational reasoning so that you
can be certain that your definition fulfills the equation above. You should then implement average

using sumlen.
(10p)

Problem 2: (General questions)

a) Is a monad a functor? If so, write fmap in terms of return and bind. Otherwise, give a
counterexample of a monad that is not a functor.

(2p)

b) Is an applicative functor a functor? If so, write fmap in terms of pure and (<¥>). Otherwise,
give a counterexample.

(2p)
¢) Provide the code for a function of type f :: @ — b. (2p)

d) Assume two applicative functors A ¢ and B a defined as follows.

newtype A a = MkA a
instance Functor A where
fmap f (MkA a) = MEA (f a)
instance Applicative A where
pure = MKA
(MEA f) < zz = fmap [zz
newtype B a = MkB a
instance Functor B where
fmap f (MkB a) = MkB (f a)
instance Applicative B where
pure = MkB
(MkB f) <& zz = fmap f zz

We will now compose them in a single data type Combined a as follows.

newtype Combined a = MkC (B (A a))

Your task is to write an instance of Applicative Combined by using pure and (<) from the
applicative functors A ¢ and B a. (4p)

Problem 3: (Phantom types)
A phantom type is a parametrised type whose parameters do not all appear on the right-hand
side of =. An example of such a type is the following.

newtype Const a b = Const a

Here Const is a phantom type since type parameter b does not occur in the implementation of the
type. The idea of having “phantom” arguments (like b) above is commonly used to capture some
invariant about the data contained by such a data type. Let us consider the following example.
You are programming a web server and you know that forms accompanying web requests must be
validated before processing them. To implement such an invariant, we introduce the following two
empty types.

data Unwvalidated
data Validated

Now, we declare the phantom type
data FormData a = FormData String

which uses a to indicate if the string has been validated. For instance, a string is initially considered
as an unvalidated form.

formData :: String — FormData Unvalidated

Then, a validation function takes an unvalidated form into a possibly valid one.
validate :: FormData Unvalidated — Maybe (FormData Validated)

Once the string is validated, it can then be process.

useData :: FormData Validated — I0 ()

a) You got a piece of code which manages different measurements with the following interface.

data Measure = Measure Float
measure_m :: IO Measure
measure_km : IO Measure

add :: Measure — Measure — Measure
add (Measure z1) (Measure z2) = Measure (z1 + z2)

However, you realize that measurements might be done in meters (measure_m), or kilome-
ters (measure_km). Furthermore, the function add might add centimeters and kilometers,
producing a measurement which has no sense. Your task is to modify the type signatures of
the API above with phantom types to avoid mixing measurements of different units. Do you
need to change the implementation of the function add?

(8p)

b)

In the previous item, you realize that the function add can only add measurements of the same
unit. To make the programming experience more smooth, you need to provide an overloaded
version of add so that it can handle arguments of different units.

(4p)

As the phantom type FormData a was introduced in a), it allows the type variable a to be
instantiated to an arbitrary type. For instance, it could be instantiated to Bool and Float

fb :: FormData Bool
If :: FormData Float

which has no meaning for the considered scenario. We would like to restrict a to be only
instantiated to types Unwalidated and Validated. Your task is to write code such that the
phantom type can only be instantiated to such types. Which extension of GHC do you need?

(8p)

Problem 4: (Faceted Values)
Sometimes software needs to handle information sensitive to different users. One way to ensure

such separation is by using a faceted values semantics, where values have different facets (views)
depending on who looks at them. The following data type implements faceted values.

type User = String
data Fac a where

Raw ::a — Faca
View :: User — Fac a — Fac a — Fac a

Term Raw 7 indicates that z is visible to all the users. Term View u secret public denotes the
value secret if the program is allowed, or granted access, to look into u’s data. In contrast, if it
is explicitly forbidden from looking into »’s data, then it will see public. If the program is neither
allowed nor denied to look into u’s data, then the view is undefined. Let us consider the following

example:

ezamplel :: Fac Integer
ezamplel = View "Leonor" (Raw 42) (Raw 7)

If the program is allowed to see "Leonor"’s data, ezamplel denotes 42. In contrast, if it is

forbidden to do so, then ezamplel denotes 7.
We call projection the function that takes a faceted value and extracts the value that it denotes

depending on the permissions given to the program. More specifically,

type Allowed = [User]
type Denied = [User]

projection :: Fac a — Allowed — Denied — Maybe a

We assume that projection is always called with disjoint values of Allowed and Denied. This
function returns a Maybe-value since it might not be possible to extract a value.

> projection ezamplel ["Leonor"] []

Just 42

> projection ezamplel [] ["Leonor"]
Just 7

> projection ezamplel ["Martin"] ["Leonor"]
Just 7

> projection ezamplel ["Martin"] []

Nothing

> projection examplel || ["Martin"]
Nothing

The last two cases return nothing since it is neither allowed nor denied to see "Leonor"’s informa-

tion.
Faceted values can also be nested, which implies that permissions might need to have more than
one user in order to return a Just-constructor with a value. Let us consider the following example

to illustrate that:

example2 :: Fac Integer
‘ezample2 = View "Leonor" (View "Martin"

(Raw 42)
(Raw 100)
)
(Raw 7)
> projection ezample2 ["Leonor", "Martin"] []
Just 42
> projection ezample2 ["Leonor"] ["Martin"]
Just 100
> projection ezample2 ["Martin"] ["Leonor"]
Just 7
> projection ezample2 ["Leonor"] [
Nothing
> projection ezample? (| []
Nothing
a) Write the function projection. (5p)

b) In this part, we will build computations based on faceted values by giving it a monadic
structure! For that, we start by extending our data type definition as follows to encode the
monadic operations in a deep-embedded fashion.

data Fac a where
Raw ::a — Faca
View :: User — Fac a — Fac a — Fac a
Bind :: Fac a — (a — Fac b) — Fac b

If Fac is a monad, then programs can safely manipulate faceted values for different users’
views without compromising their confidentiality. For instance, the following code

pl = examplel >= Az — return (z + 1)
p2 = ezample2 >= Az — return (z + 1)

denotes the faceted value View "Leonor" (Raw 43) (Raw 8) — observe that the bind applies
z + 1 to every leaf in the tree-structure denoted by faceted values. More concretely,

> projection pl ["Leonor"] []

Just 43

> projection pl [] ["Leonor"]

Just 8

> projection p2 ["Leonor"| ["Martin"|

Just 101
Give an instance of the type-class Monad for Fac and extend your definition of projection to
consider Bind. (7p)

c) Transform your code to implement Bind in a shallow-embedded fashion. (8p)

