
Chalmers | Göteborgs Universitet
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Tuesday, March 19th, 2019, Samhällsbyggnad, 8:30 (4hs)

Alejandro Russo, tel. 0729744968

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkänd 24-47 points, Väl godkänd 48-60 points
PhD student: 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes — a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the paper first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– As a recommendation, consider spending around 40 minutes per exercise. However, this
is only a recommendation.

– To see your exam: by appointment (send email to Alejandro Russo)

1

Problem 1: (Monad transformers)
As described by the lectures, when constructing monads using the state (StateT) and the error

(ExceptT) monad transformers, it is important to determine the order in which you apply them
since such decision affects the semantics of your monad. To illustrate this point, we start by showing
the following monad:

newtype Monad1 a = MkMonad1 (StateT Int (ExceptT String Identity) a)
deriving (Functor ,Applicative,Monad ,MonadState Int ,MonadError String)

runMonad1 :: Monad1 a → Either String a
runMonad1 (MkMonad1 st) = runIdentity (runExceptT (evalStateT st 0))

Monad Monad1 has been built using the ExceptT on the inside and then applying StateT on
top. In contrast, the following monad has ExceptT on the outside.

newtype Monad2 a = MkMonad2 (ExceptT String (StateT Int Identity) a)
deriving (Functor ,Applicative,Monad ,MonadState Int ,MonadError String)

runMonad2 :: Monad2 a → Either String a
runMonad2 (MkMonad2 er) = runIdentity (evalStateT (runExceptT er) 0)

Your task is to write a piece of code that shows the difference of the semantics when being
considered as a Monad1 or Monad2 computation. That is, you should look for a piece of code t
such that the following holds:

runMonad1 t 6≡ runMonad2 t

(12p)

2

Problem 2: (Optimization)
Consider the following implementation that computes the average on a list of integers.

average :: [Int]→ Int
average xs = sum xs ‘div ‘ length xs

sum [] = []
sum (x : xs) = x + sum xs

length [] = 0
length (x : xs) = 1 + length xs

This function traverses the list twice, once to compute the sum and another time to compute
the length of it. To reduce the number of passes, we can apply the technique of tupling. This
technique consists of obtaining, by equational reasoning, a function that traverse the list once
while computing two results. In our case, we need to obtain the definition of a function, let’s call
it sumlen :: [Int]→ (Int , Int), such that the following equation holds.

sumlen xs ≡ (sum xs, length xs)

Your task is to obtain the definition of sumlen by means of equational reasoning so that you
can be certain that your definition fulfills the equation above. You should then implement average
using sumlen.

(12p)

3

Problem 3: (Verification)
We have two known functions to fold over a list with an operator, i.e., to intercalate an operator

among the elements of a list.

foldl :: (b → a → b)→ b → [a]→ b
foldl ⊕ e [] = e
foldl ⊕ e (x : xs) = foldl ⊕ (e ⊕ x) xs

foldr :: (a → b → b)→ b → [a]→ b
foldr ⊕ e [] = e
foldr ⊕ e (x : xs) = x ⊕ (foldr ⊕ e xs)

Let’s see some examples:

foldr (+) 0 [42, 100, 500, 700] ≡ 42 + (100 + (500 + (700 + 0)))
foldl (+) 0 [42, 100, 500, 700] ≡ ((((0 + 42) + 100) + 500) + 700)

As you see above, the operator (+) has been intercalated among the elements of the list. The
difference between foldr and foldl is where the parentheses are placed. In foldr , the parentheses
are placed towards the right, while in foldl towards the left—therefore the names! In the example
above, both functions arrive at the same result since (+) is associative and 0 is the neutral element.
More generally, we have the following formal result:
Theorem Given an associative operator ⊕ with neutral element e, it holds that foldr ⊕ e xs ≡
foldl ⊕ e xs.

Your task is to prove the theorem.
(12p)

4

Problem 4: (Type level programming)
In this exercise, we will implement heterogeneous lists in Haskell, i.e., lists where the elements

can have different types!
We start by assuming that we have the DataKinds extension enable, which gives us type-level

lists, i.e., we have the types [], 42 : [], etc. Now, we will use the power of GADTs to introduce
heterogeneous lists.

data HList xs where
HNil :: ...
(:::) :: ...

a) Your task is to complete the type signatures for HNil and (:::). Your implementation should be
able to implement the following examples.

ex1 :: HList [Char , Integer ,Double, [Integer]]

ex1 = ’a’ ::: 42 ::: 1.0 ::: [42] ::: HNil

ex2 :: HList [[Double],Char]
ex2 = [1.0] ::: ’b’ ::: HNil

(6p)

b) We can now build heterogeneous lists, but we cannot show them. In order to show them on the
screen, we need to have instances of Show for HList xs. Your task is to provide instances for
Show .

> ex1

’a’ ::: 42 ::: 1.0 ::: [42] ::: HNil

> ex2

[1.0] ::: ’b’ ::: HNil

(6p)

5

Problem 5: (Monads transformers)
In the lectures and in the last lab this year, we show how information-flow control (IFC) is

a promising technology to guarantee confidentiality of data when manipulated by untrusted code
(i.e., code written by someone else) as well as buggy code (i.e., code written perhaps by ourselves
or a colleague).

To build secure programs which do not leak secrets, we studied a small EDSL in Haskell with
two core concepts: labeled values and secure computations. The following code is the core imple-
mentation of the MAC library given in the lectures:

{-Points in the security lattice -}
data L
data H

{-Order relationship of the lattice -}
class l v l ′ where

instance L v L where
instance L v H where
instance H v H where

{-Labeled values -}
newtype Labeled l a = Labeled a

{-Secure computation with underlying IO actions -}
newtype MAC l a = MkMAC (IO a)

{-Functor, Applicative, and Monad instances -}
instance Functor (MAC l) where

fmap f (MkMAC io) = MkMAC (fmap f io)

instance Applicative (MAC l) where
pure = MkMAC ◦ return
(<∗>) (MkMAC f) (MkMAC a) = MkMAC (f <∗> a)

instance Monad (MAC l) where
return = pure
MkMAC m >>= k = MkMAC (m >>= runMAC ◦ k)

{-Primitive combinators -}
runMAC :: MAC l a → IO a
runMAC (MkMAC m) = m

label :: l v l ′ ⇒ a → MAC l (Labeled l ′ a)
label v = return (Labeled v)

unlabel :: l v l ′ ⇒ Labeled l a → MAC l ′ a
unlabel (Labeled v) = return v

joinMAC :: l v l ′ ⇒ MAC l ′ a → MAC l (Labeled l ′ a)
joinMAC m = MkMAC (runMAC m) >>= label

Above, the constructors MkMAC and Labeled are never exported so that users of the DSL
cannot break its abstraction. In this exercise, you will need to create a monad transformer for
MAC , which we call MACT .

data MACT m l a

6

The idea is that when applying MACT to a monad m, then we obtain a monad capable to per-
form the effects of m as well as keeping sensitive information secret. For instance, MACT l (State s) a
is a secure state monad with state s.

a) Your task is to give the instances for Functor , Applicative and Monad for MACT l m for your
implementation.

(8p)

b) Since MACT l m might create many security monads, e.g., MACT l Identity a, MACT l (State s) a,
MACT l IO a, that means that there would be many implementation of label , unlabel , and join.
In this light, we need to overload such operators and we do so in the following type class.

class MACMonad m where
label ′ :: LessEq l l ′ ⇒ a → m l (Labeled l ′ a)
unlabel ′ :: LessEq l l ′ ⇒ Labeled l a → m l ′ a
join ′ :: LessEq l l ′ ⇒ m l ′ a → m l (Labeled l ′ a)

Observe that we have “primed” the operators so that there is no name clashing with the code
in part a), i.e., you see label ′ rather than label .

Your task is to provide the instance of MACMonad m when m is obtained by applying your
monad transformer MACT l to the an arbitrary monad m. In other words, you should provide
the code for the following instance:

instance Monad m ⇒ MACMonad (MACT m) where

(4p)

7

