Chalmers | GOTEBORGS UNIVERSITET
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260
Monday, August 21, 2017, ”Maskin”-salar, 14:00 (4hs)
(including example solutions to programming problems)

XXX, tel. XXX

e The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkénd 24-47 points, Vil godkand 48-60 points
PhD student: 36 points to pass.

e Results: within 21 days.

e Permitted materials (Hjalpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes — a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

e Notes:

— Read through the paper first and plan your time.

Answers preferably in English, some assistants might not read Swedish.

— If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

— Start each of the questions on a new page.

— The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

— Hand in the summary sheet (if you brought one) with the exam solutions.

— As a recommendation, consider spending around 1h 20 minutes per exercise. However,
this is only a recommendation.

— To see your exam: by appointment (send email to Alejandro Russo)

Problem 1: (Phantom types)
A phantom type is a parametrised type whose parameters do not all appear on the right-hand
side of =. An example of such a type is the following.

newtype Const a b = Const a

Here Const is a phantom type since type parameter b does not occur in the implementation of the
type. The idea of having “phantom” arguments (like b) above is commonly used to capture some
invariant about the data contained by such a data type. Let us consider the following example.
You are programming a web server and you know that forms accompanying web requests must be
validated before processing them. To implement such an invariant, we introduce the following two

empty types.

data Unvalidated
data Validated

Now, we declare the phantom type
data FormData a = FormData String

which uses a to indicate if the string has been validated. For instance, a string is initially considered
as an unvalidated form.

formData :: String — FormData Unvalidated

Then, a validation function takes an unwvalidated form into a possibly valid one.
validate :: FormData Unvalidated — Maybe (FormData Validated)

Once the string is validated, it can then be process.

useData :: FormData Validated — 10 ()

a) You got a piece of code which manages different measurements with the following interface.

data Measure = Measure Float
measure_m :: 10 Measure
measure_km :: 10 Measure

add :: Measure — Measure — Measure
add (Measure z1) (Measure 15) = Measure (1 + 12)

However, you realize that measurements might be done in meters (measure_m), or kilome-
ters (measure_km). Furthermore, the function add might add centimeters and kilometers,
producing a measurement which has no sense. Your task is to modify the type signatures of
the API above with phantom types to avoid mixing measurements of different units. Do you
need to change the implementation of the function add?

Solution:

data Kilometer
data Meter

data Measure v = Measure Float
measure-m :: 10 (Measure Meter)
measure_km :: 10 (Measure Kilometer)

add :: Measure u — Measure v — Measure u
add (Measure 1) (Measure 15) = Measure (1 + 12)

(8p)

b) In the previous item, you realize that the function add can only add measurements of the same

unit. To make the programming experience more smooth, you need to provide an overloaded
version of add so that it can handle arguments of different units.

Solution:

class Comb a b ¢ where
add' :a —b— ¢

instance Comb (Measure Meter) (Measure Kilometer) (Measure Meter) where
add’ (Measure m) (Measure km) = Measure (m + 1000 x km)

instance Comb (Measure Meter) (Measure Kilometer) (Measure Kilometer) where
add’ (Measure m) (Measure km) = Measure (km + m % 0.001))

-- More instances that are trivially defined

(4p)

As the phantom type FormData a was introduced in a), it allows the type variable a to be
instantiated to an arbitrary type. For instance, it could be instantiated to Bool and Float

fb :: FormData Bool
ff :: FormData Float

which has no meaning for the considered scenario. We would like to restrict a to be only
instantiated to types Unwalidated and Validated. Your task is to write code such that the
phantom type can only be instantiated to such types. Which extension of GHC do you need?

Solution:

{-# LANGUAGE DataKinds #-}

data IsValid = Unvalidated | Validated
data FormData (a :: IsValid) = FormData String

(8p)

FUNCTOR TYPE-CLASS IDENTITY
class Functor ¢ where fmap :: (a - b) > ca—cb fmap id = id where id = Az — =z

MAP FUSION
fmap (f o g) = fmap f o fmap g

Figure 1: Functors

Problem 2: (Functors) As its name implies, a binary tree is a tree with a two-way branching
structure, i.e., a left and a right sub tree. In Haskell, such trees can be defined as follows.

data Tree a where
Leaf ::a — Tree a
Node :: Tree a — Tree a — Tree a

a) Show that Tree a is a functor. For that, you should provide an instance for the Functor
type-class and prove that fmap for finite trees, i.e., fmap :: (a — b) — Tree a — Tree b,
fulfills the laws for functors (see Figure 1).

Solution:

instance Functor Tree where

fmap f (Leaf a) = Leaf (f a)
fmap f (Node t1 t2) = Node (fmap f t1) (fmap f t2)

Important: Assume that f and g are total, i.e., they do not raise any errors or loop in-
definitely when applied to an argument. If your proof is by induction, you should indicate
induction on what (e.g., on the length of the list). Justify every step in your proof.

(8p)
Solution: Proofs by induction on the height of the tree

-- Identity law

-- Base case

fmap id (Leaf a) =

-- by definition fmap.0
Leaf (id a) =

-- by definition of id
Leaf a =

-- by definition of id

id (Leaf a)

-- Inductive case

fmap id (Node [) =
-- by definition of fmap.1

Node (fmap id 1) (fmap id r) =
-- by LLH.

Node (id 1) (id r)

-- by definition of id
Node | r

-- by definition of id
id (Node |)

-- Map fusion

-- Base case

fmap (f o g) (Leaf a) =
-- by definition fmap.0

Leaf (fog)a) =
-- by definition of .

Leaf (f (g a))
-- by definition of fmap.0

fmap f (Leaf (g a)) =
-- by definition of fmap.0

fmap f (fmap g (Leaf a))
-- Inductive case

fmap (f o g) (Node [r)
-- by definition of fmap.1

Node (fmap (f o g) 1) (fmap (fog) r)
- by LH.

Node (fmap f (fmap g 1)) (fmap f (fmap g r)) =
-- by definition of fmap.1

fmap f (Node (fmap g 1) (fmap g 7))
-- by definition of fmap.1

fmap f (fmap g (Node [1))

b) As with lists, it is also useful to “fold” over trees. Given a tree ¢ with elements ey, eq, ..., e,
and an operator @, folding over the tree ¢ with operator @ intuitively means to intercalate
the operator among the elements of the tree, i.e., e1 D ea Bes D ... D e,. For simplicity, we
assume that the operator & is always associative. We call the function implementing folding
over trees foldT.

foldT :: (a — a — a) — Tree a — a

By using foldT, we can now express a bunch of useful functions on trees.

P1 P2
height _tree = foldT (Xl r — max | r 4+ 1) o fmap (const 0) sum_tree = foldT (+)

P.
le?:wes = foldT (#) o fmap (Az — [z])

Program P; computes the height of a tree. Program P, sums all the numbers in a tree.
Program P; extracts all the elements of a tree.

Your task is to implement foldT'. (4p)
Solution:
foldT :: (a — a — a) = Tree a — a

foldT op (Leaf a) a
foldT op (Node [) = (foldT op 1) ‘op* (foldT op)

There is a relation between mapping functions over trees, leaves and lists. More specifically,
we have the following equation for finite and well-defined trees.

map [o leaves = leaves o fmap f

It is the same to first extract the leaves and then map the function (left-hand side), as it is
to map the function first and then extract the leaves (right-hand side).

Your task is to prove that the equation holds.

You can assume the following properties and definitions for this exercise and the
rest of the exam!

() Assoc. (.) (ID LEFT) (ID RIGHT) (ETA)
(feg)z=f(gz) (fog)oz=fo(goz) idof=f foid=f e~ fa=f
(cons.0) ((#).0) ((#).1)
z:[]=z] []H ys =ys (z:xs) H ys =z : (zs H ys)
(Assoc. (#)) (map.0) (map.1)
xs H (ys H zs) = (zs H ys) H zs map f [] =[] map f (x:x8) =f x:map [zs
You cannot assume any property that relates (#), map, and fmap — if you need such
properties, you should prove them too! (8p)
Solution:

-- Auxiliary lemma
map f (xs H ys) = map f xs H map f ys

-- Proof by induction on the length of xs

-- Base case

map [([] #ys) =

- (++).0

map f ys =
- (++).0

[J 4 map fys =

-- map.0

map [[] 4 map [ys

-- Inductive case

map f ((x:zs) H ys) =
-- map.1
fx:map f (zs H ys)
- LH.
fx:(map f xs + map f ys) =
- (+4).1

(f z:map f zs) H map [ys =
-- map.1

map f (z:xs) H map [ys

-- Proof by induction on the height of trees
map f o leaves = leaves o fmap f

-- Base case
map f (leaves (Leaf a))
-- Def. leaves

map [(foldT (4) (fmap (Az — [z]) (Leaf a)))
-- Def. fmap on Leaf

map [(foldT (4) (Leaf [a]))
-- Def. foldT

map f [a]
- Def (v)

map f (a:[])
-- Def map.1

fa:map f]
-- Def. map.0
fa:)
-- Def ()
[f a]
-- Def. leaves
leaves (Leaf (f a))
-- Def. fmap
leaves (fmap f (Leaf a))
-- Inductive case
map f (leaves (Node [1))
-- Def. leaves
map f (foldT (+#) (Node I 1))
-- Def. foldT
map f ((foldT (H) 1) +# (foldT (+) r))
-- Auxiliary lemma
map f (foldT (+) 1) H map f (foldT (+) r)
-- Def. leaves
map f (leaves 1) H map f (leaves r)
- 1H
leaves (fmap f 1) 4 leaves (fmap f r)

-- Def. leaves
foldT () (fmap f 1) H foldT () (fmap f)
-- Def. foldT
foldT (+) (Node (fmap f 1) (fmap f 7))
-- Def. leaves
leaves (Node (fmap f 1) (fmap f r))
-- Def. fmap
leaves (fmap f (Node [1))

Problem 3: (Miscellaneous)
a) Write a function of type a — b, where a and b are polymorphic types. (4p)
b) Let us consider the alternative formulation of monads.

return’ ::a — m a
join :m (ma)— ma
fmap (a—b) >ma—>mb

This interface requires m to be a functor and introduces an operation called join. Further-
more, return’, join, and fmap are required to obey various different laws involving return and
(>=).

m>=f = join (fmap f m)
m >=id = join m
m >= (return o f) = fmap f m

Now, let us consider the function (+) with the following type signature:

(+)::Numa=a—a—a

What is the output of join (4)? Hint: remember the reader monad.

Solution: We need to make match ¢ — a — a with m (m a). This implies that m = (a —),
which is reader monad. By the laws, we know that join mm = mm >=id. So,

join (+) = (+) >=id
-- The definition of bind for the reader monad is:
[>=k=Xa—k(fa)a
-- Therefore,
(+)>=id = Xa —id ((+) a) a
-- Further reducing
(+)>=id=Xa— ((+) a) a
-- Which is the function double
Aa = a+a

(8p)
c) Give an example of a data type definition which is not a functor and explain why this is the
case. You should be clear why fmap cannot be implemented.
Solution:
-- The a is in negative position, so fmap cannot apply the function since

-- there is no a
data Fa=F (a —())

(4p)

d) Define a data type that is a functor and not applicative. Define fmap and justify why the
instance Applicative cannot be defined.

Solution:

data Pair r a = Pair r a

instance Functor (Pair r) where
-- possible

instance Applicative (Pair r) where
pure a = -- The pair cannot be built since pure receives an a
-- but it also needs an r, which does not receive.

(4p)

10

