$Distribuerade\ system\ fk\ -\ Distributed\ systems,\ advanced\ course$ $Tentamen\ 2015\text{-}08\text{-}21$

Dag, Tid. Sal: August 21st 2015, 14:00-18:00, M

Kursansvarig: Philippas Tsigas (Tel: 772 5409)

Hjälpmedel: Inga

Totalt Poängtal: 60

 $Betygsgr\"{a}nser:$

CTH: 3:a 30 p, 4:a 38 p, 5:a 48 p

GU: Godkänd 30p, Väl godkänd 48 p

Instructions

Please answer in English, if possible.
If you have very big difficulty with that, though, you may answer in Swedish.

- Do not forget to write your personal number and if you are a GU or CTH student and at which "linje"
- Please start answering each assignment on a new page; number the pages and use only one side of each sheet of paper.
- Please write in a tidy manner and explain (briefly) your answers.
- Students must **not** write their personal number on the answer sheets since the exam is anonymous: they shall write that **only** on the name slip area that they will seal.

LYCKA TILL !!!!

1. 10 marks

Two processes, A and B, both share a concurrent stack. Consider the following history that your system can give to concurrent accesses to the stack objects by the two processes A and B (all following events are executed in the order described below):

A invokes a push(5). A successfully finishes the push(5) operation, B invokes a push(6) operation, B successfully finishes the push(6) operation, A invokes a pop operation, A successfully finishes the pop operation that returns 5.

- (a) Is the execution linearizable? Is the execution sequential consistent? Please provide an explanation for that.
- (b) Give the definitions of linearizability and sequential consistency. Explain the difference between linearizability and sequential consistency.

2. 10 marks

Assume that your system provides a reliable, totally ordered (atomic) multicast. Design a replication scheme based on the state machine approach that quarantees that all replicas go exactly through the same sate transitions. Implement a highly available concurrent Stack on top of this replication scheme.

3. 15 marks

- (a) Which type of faults are called Byzantine faults?
- (b) Prove that it is impossible to reach agreement in a system with three processes if one of them is Byzantine faulty.
- (c) How can the above proof be generalised for a system with n processes?
- (d) Is it possible to reach agreement in a system with three processes if one of them is Byzantine faulty by using authentication (unforgeable signatures)? If your answer is yes, describe an algorithm. If your answer is no give a proof to support your answer.

4. 5 marks

Define the specification of the i) Reliable Broadcast, ii) FIFO Broadcast and iii) Causal Broadcast.

5. 10 marks

Describe an algorithm that computes a spanning tree of a network G(V, E). How nodes of the network can use the existence of such a spanning tree in order to perform broadcasting? Is this a good solution to be used on wireless sensor networks with battery constraints?

6. 10 marks

For solving the dinning philosophers problem the following solution has been proposed: All philosophers except from philoshopher P_0 seek their right fork first. Philoshopher P_0 seek her left fork first. Does this solution solve the dinning philosophers problem? If your answer is yes provide a proof and an analysis of the time complexity of the algorithm.

If your answer is no provide a counterexample.