
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering
Division of Systems and Control

EXAMINATION IN LINEAR CONTROL SYSTEM DESIGN

(Course SSY285)

Friday August 30, 2024

Time and place: 08:30 - 12:30 (Johanneberg)
Teacher: Torsten Wik (031 - 772 5146)

The total points achievable are 30. Unfinished solutions normally results in 0
points. Incorrect solutions with significant errors, unrealistic results that are not
commented, or solutions that are too difficult to follow also result in 0 points.

Numerically incorrect calculations that do not cause unrealistic results will normally
lead to reduction of 1 point. Incorrect answers that are consequences of a previous
error and do not simplify the problem will not lead to any further reduction.

The scales for grading are

Grade 3: at least 12 points
Grade 4: at least 18 points
Grade 5: at least 24 points

The following aids are allowed:

1. Course text book Control Theory (or Swedish version Reglerteori) by T. Glad
and L. Ljung and one more control textbook.

Paper copies are accepted instead of books.

2. 1 piece of A4 paper, with hand written notes on both sides. Copied sheets are
not allowed!

3. Mathematical and physical handbooks of tables, such as Physics handbook
and Beta Mathematics Handbook.

4. Memory depleted, non-programmable pocket calculator.

Solutions to problems and exercises are not allowed in the notes!

Mobile telephones, laptops or tablets/iPads are not allowed!
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1. Consider the system below with two tanks in series. To the first tank there is
an uncontrollable flow q0 of a fluid. In order to control the levels in the tanks a
controller is to be installed using a level sensor, sensing the level in the second
tank, and a pump delivering a flow q1 to the first tank.

h1 h2

q0

u=q1

level

sensor
y=h
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q12

q2
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According to Bernoulli’s law the flow between the two tanks is given by

q12 = k12
√

h1 − h2

and the flow leaving the second tank is q2 = k2
√
h2.

The bottom areas of the two tanks are A1 = 0.5 m2 and A2 = 1 m2, and
k12 = k2 = 0.1 m5/2s−1.

Note that all questions can be answered independantly of eachother!

(a) Linearize the system and show that around the operating point h̄1 = 2 m
and h̄2 = 1 m the response from pumpflow u = q1 to the measured level
y = h2 is given by the state space model

d

dt
∆h(t) =

[
−0.1 0.1
0.05 −0.1

]
∆h(t) +

[
2
0

]
∆u(t) +

[
2
0

]
∆q0(t)

∆y(t) =
[

0 1
]

∆h(t)

where ∆ denotes deviations from stationary values in the operating point.

3 p.

(b) Determine the corresponding transfer function from ∆u to ∆y.

1 p.

(c) Even though the main purpose is to keep the level h2 constant (to give a
constant flow q2 to the next stage in the process) it is of course important
to monitor the level in tank 1 as well. To save the money though, it would
be preferable if we could estimate it instead. Is that doable?

2 p.

(d) It is decided that both levels should be controlled using a stationary LQG
controller minimizing

J = E{∆hTQx∆h + qu∆u}
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From the beginning the tuning matrices were chosen to be Qx = I and
qu=1, but then it turned out that the first tank was sometimes flooded.
What two changes would you consider first when retuning?

1 p.

(e) Another issue was found to be that the disturbances on q0 could be low
frequent, causing the level y to be off setpoint for long periods. What
addition to your controller would you suggest?

Please state the matrices and equations to solve, and draw a block diagram
showing the complete control structure.

3 p.

2. The process

G(s) =
Y (s)

U(s)
=

e−Ts

s + 1

is to be controlled with piecewise constant control signal with a sampling
interval h = T s.

(a) Determine a time discrete state space model of the process.

2 p.

(b) By coincidence(!) the time delay is T = ln 2 s.

Let u(k) = Krr(k) − uFB(k) and determine the state feedback uFB(k) =
−Lx(k) that gives a double pole in 0.25 and reformulate it as uFB(k) =
H(q)y(k).

2 p.

(c) Determine the feed forward gain Kr that gives the correct stationary gain
from r to y.

1 p.

3. Consider the following MIMO-system:

d

dt
x(t) =

 −0.5 1 1
0 −1 0
0 0 −1

x(t) +

 0 1
1 0
0 1

u(t)

y(t) =

[
1 0 0
0 1 1

]
x(t) +

[
1 0
0 0

]
u(t)

Examine the system’s observability, controllability, detectability and stabiliz-
ability!

4 p.
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4. Step response experiments have been conducted on a system with two control
inputs and two control outputs (see figure).
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(a) State an approximate transfer function matrix for the system.

2 p.

(b) Use RGA analysis to suggest pairing in a decentralized control (suggestion
can be made from figure, i.e. without answering (a). This gives 2 p.).

3 p.
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5. Assume we want to estimate the states of an observable system

ẋ(t) = Ax(t) + Bu(t) + Nw(t)

y(t) = Cx(t) + v(t),

where w and v are independent stochastic disturbances. For the Kalman filter
estimate to be optimal, both w and v has to be white noise. A common
situation, though, is that only the measurement noise v can be assumed white
while the process disturbance w is coloured.

(a) We begin by studying a specific case, where the measurement noise has
intensity Rv = 1, and the process and the spectrum of the process distur-
bance are given by

A = −1, B = 1, C = 1, N = 1 and Φw(ω) =
1

1 + ω2

Add a model of the process disturbance to the process model and derive
the optimal continuous time observer of x. State the observer on state-
space form.

Unfortunately, the solution is difficult to determine by hand. However,
you may use that for the optimal observer the stationary estimation error
variance is Var{x̂− x} = 0.2.

4 p.

(b) Now, we will study the general case. Assume that the process is stable
and that the disturbance w is scalar and can be modelled using spectral
factorization. Is it guaranteed that we can always estimate x optimally
using a Kalman filter for such a system (motivation required)?

Hint: It may be useful to use observer canonical form to model the dis-
turbance.

2 p.

Good luck!
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