
CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering
Division of Systems and Control

EXAMINATION IN LINEAR CONTROL SYSTEM DESIGN

(Course SSY285)

Wednesday April 3, 2024

Time and place: 08:30 - 12:30 (Johanneberg)
Teacher: Torsten Wik (031 - 772 5146)

The total points achievable are 30. Unfinished solutions normally results in 0
points. Incorrect solutions with significant errors, unrealistic results that are not
commented, or solutions that are too difficult to follow also result in 0 points.

Numerically incorrect calculations that do not cause unrealistic results will normally
lead to reduction of 1 point. Incorrect answers that are consequences of a previous
error and do not simplify the problem will not lead to any further reduction.

The scales for grading are

Grade 3: at least 12 points
Grade 4: at least 18 points
Grade 5: at least 24 points

The following aids are allowed:

1. Course text book Control Theory (or Swedish version Reglerteori) by T. Glad
and L. Ljung and one more control textbook.

Paper copies are accepted instead of books.

2. 1 piece of A4 paper, with hand written notes on both sides. Copied sheets are
not allowed!

3. Mathematical and physical handbooks of tables, such as Physics handbook
and Beta Mathematics Handbook.

4. Memory depleted, non-programmable pocket calculator.

Solutions to problems and exercises are not allowed in the notes!

Mobile telephones, laptops or tablets/iPads are not allowed!

1



1. Consider the system below with two tanks in series. To the first tank there is
an uncontrollable flow q0 of a fluid. In order to control the levels in the tanks a
controller is to be installed using a level sensor, sensing the level in the second
tank, and a pump delivering a flow q1 to the first tank.

h1 h2

q0

u=q1

level
sensor

y=h2

q12
q2

A1 A2

According to Bernoulli’s law the flow between the two tanks is given by

q12 = k12
√

h1 − h2

and the flow leaving the second tank is q2 = k2
√
h2.

The bottom areas of the two tanks are A1 = 0.5 m2 and A2 = 1 m2, and
k12 = k2 = 0.1 m5/2s−1.

Note that all questions can be answered independantly of eachother!

(a) Linearize the system and show that around the operating point h̄1 = 2 m
and h̄2 = 1 m the response from pumpflow u = q1 to the measured level
y = h2 is given by the state space model

d

dt
∆h(t) =

[
−0.1 0.1
0.05 −0.1

]

∆h(t) +

[
2
0

]

∆u(t) +

[
2
0

]

∆q0(t)

∆y(t) =
[
0 1

]
∆h(t)

where ∆ denotes deviations from stationary values in the operating point.

3 p.

(b) Determine the corresponding transfer function from ∆u to ∆y.

1 p.

(c) Even though the main purpose is to keep the level h2 constant (to give a
constant flow q2 to the next stage in the process) it is of course important
to monitor the level in tank 1 as well. To save the money though, it would
be preferable if we could estimate it instead. Is that doable?

2 p.
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(d) It is decided that both levels should be controlled using a stationary LQG
controller minimizing

J = E{∆hTQx∆h + qu∆u2}

From the beginning the tuning matrices were chosen to be Qx = I and
qu=1, but then it turned out that the first tank sometimes was flooded.
What two changes would you consider first when retuning?

1 p.

(e) Another issue was found to be that the disturbances on q0 could be low
frequent, causing the level y to be off setpoint for long periods. What
addition to your controller would you suggest?

Please state the matrices and equations to solve (you need not solve them!),
and draw a block diagram showing the complete control structure.

3 p.

2. A continuous time linear system is given by

y(t) =










0
2

p+ 1

0
1

p
1

p+ 1

2

p+ 1










u(t)

Note: p is the time derivative operator (d/dt) which can be used in calculations
for transfer function operators, such as the elements in the above matrix, in
the same way as the Laplace variable s is used for transfer functions.

(a) What are the poles and zeros of this multivariable system?

2 p.

(b) Give a state space realization of the system. Is it minimal?

2 p.
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3. A controller F (s) has been determined for a process model with transfer func-
tion G(s) (see figure).

+

-

F (s) G(s)
e ur y

controller process

The Bode diagram for the corresponding transfer function from r to y is given
below.
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In the modelling some dynamics and uncertainties were ignored. The ’true’
transfer function for the process is

G0(s) =
K

1 + 0.5s
G(s), 0.9 < K < 1.1

where we have included an uncertainty of the stationary gain K.

Can we trust that the feedback system will remain stable in spite of the sim-
plifications made in the design of the controller F (s)?

If you sketch in the Bode diagram above please do not forget to include that
when you submit your answers.

3 p.
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4. Consider the system

G(s) =
1

s
e−0.6s

from input u(t) to output y(t).

This system is to be discretized for the sampling time h = 1 and zero order
hold input. The difficulty here is that there is a time delay that is not equal
to a multiple of the sampling time.

(a) Express the above model as a continuous time LTI state space model with
delayed input.

1 p.

(b) Use the analytical solution to the state space model to derive the corre-
sponding discrete time state space model on standard form

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

for which y(k) = y(kh) = y(t) if u(k) = u(t) for all t = kh.

2 p.

5. Assume we have a system

x(k + 1) =

[
1 1
0 1

]

x(k) +

[
1 0
0 1

]

u(k) +

[
0
1

]

w(k)

y(k) =
[
1 0

]
x(k) + e(k)

where e is a measurement white gaussian noise (WGN).

The process disturbance w is not white, though it originates from a source v
that can be considered as WGN, see the figure below.

yu

v

e

+ +

+
q -1

A

B C

H q( )

w

Neither w nor v can be measured online to be used in a feed forward control.
However, from separate system identification experiments the pulse transfer
operator H from v to w has been determined to be

H =
βq−1

1 + α1q−1 + α2q−2
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This can be used in an LQG controller by extending the state-space model
and then estimate and feed back all states, i.e. the original process states and
the disturbance states.

(a) Determine a state space model

xw(k + 1) = Awxw(k) +Bwv(k)

w(k) = Cwxw(k)

corresponding to H .

2 p.

(b) Give an extended state space model, including the disturbance states, on
the correct form for design of a Kalman filter (you need not calculate the
filter).

2 p.
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6. When describing the input-output behaviour of a system, uncontrollable and
unobservable states (modes) can be removed. Another way to (further) reduce
the number of states is to look at the time constants related to different states
(modes). If some states have very fast dynamics relative to the others they
can often be assumed to be in a steady state, which can be used to reduce the
model order.

The state-space equations for a system has been determined by physical mod-
elling:

d

dt
x(t) =







−2 0 1 1
0 −0.1 0 0
0.5 −1 −1 −10
0 1 7 −100







︸ ︷︷ ︸

A

x(t) +







1
0
0.5
0






u(t)

y(t) =

[
1 0 1 0
0 1 0 1

]

x(t)

Running the command [V,D]=eig(A) in Matlab gives

V =







−0.8704 0.7675 0.0113 −0.3353
0 0 0 0.7237

0.4911 0.6395 −0.1013 −0.6021
0.0353 0.0453 −0.9948 −0.0349







D =







−2.6048 0 0 0
0 −1.1078 0 0
0 0 −99.2874 0
0 0 0 −0.1000







where the columns of V are the eigenvectors of A, and the elements on the
diagonal of D are the eigenvalues. Then taking the inverse of V gives

V −1 =







−0.6851 0.3676 0.8287 −0.0921
0.5261 1.0204 0.9387 −0.0896
−0.0004 0.0109 0.0721 −1.0126

0 1.3817 0 0







(a) Use the above information to diagonalize the state-space equation.

3 p.

(b) Suggest, based on an analysis of the diagonalized system, a reduced state-
space model that should give about the same input-output behaviour as
the original model.

3 p.

Good luck!
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