
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering
Division of Systems and Control

EXAMINATION IN LINEAR CONTROL SYSTEM DESIGN

(Course SSY285)

Monday January 13, 2020

Time and place: 14:00 - 18:00 at SB
Teacher: Torsten Wik (031 - 772 5146)

The total points achievable are 30. Unfinished solutions normally results in 0 points.
Incorrect solutions with significant errors, unrealistic results that are not commented
or solutions that are too difficult to follow also result in 0 points.

Numerically incorrect calculations that do not cause unrealistic results will normally
lead to reduction of 1 point. Incorrect answers that are consequences of a previous
error and do not simplify the problem will not lead to any further reduction.

The scales for grading are

Grade 3: at least 12 points
Grade 4: at least 18 points
Grade 5: at least 24 points

The following aids are allowed:

1. Course text book Control Theory (or Swedish version Reglerteori) by T. Glad
and L. Ljung and one more control textbook.

Paper copies are accepted instead of books

2. 1 piece of A4 paper, with hand written notes on both sides. Copied sheets are
not allowed!

3. Mathematical and physical handbooks of tables, such as Physics handbook
and Beta Mathematics Handbook.

4. Memory depleted, non-programmable pocket calculator.

Notes, mobile telephones, laptops or palmtops, are not allowed!
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1. A fishing boat is to be equipped with a speed and position over ground (bot-
tom) control based on GPS position. Here we may assume only one space
dimension, i.e. the boat follows a straight line (see figure) and the position
is x.
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Let the boat position be z(t) [m], the boat speed be v(t) [m/s] and the propul-
sion force be F (t) [N ]. We may assume all friction forces together be related
to the speed according to

Fw(t) = 400v2(t) [N ]

The boat mass is 10 000 kg.

(a) Determine a continuous time state space model for the boat propulsion,
describing the behavior from propulsion force u = F to position and

speed y =
[
z v

]T
.

2 p.

(b) The normal speed is 5 m/s (approximately 10 knots). Show that the
linear state space model describing the dynamic behavior around that
speed is

d

dt
∆x(t) =

[
0 1
0 −0.4

]
∆x(t) +

[
0

10−4

]
∆u(t)

∆y(t) =

[
1 0
0 1

]
x(t)

2 p.

(c) Discretize the above state space model for zero order hold and a sampling
rate of 10 ms.

2 p.
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2. A linear time invariant system is given by

d

dt
x(t) =

 −1 0.5 0
0.5 −1 0
0 0 −1

x(t) +

 0 1
0 1
1 0

u(t)

y(t) =

[
0 1 0
0 0 1

]
x(t)

(a) We only measure x2 and x3. Can x1 be estimated?

2 p.

(b) Show that the system is not controllable?

1 p.

(c) Is the system stabilizable?

2 p.

(d) The eigenvectors of the system matrix (A) are

v1 =

 1/
√

2

−1/
√

2
0

 , v2 =

 0
0
1

 , v3 =

 1/
√

2

1/
√

2
0


Diagonalize the system. You may then use 1/

√
2 0 1/

√
2

−1/
√

2 0 1/
√

2
0 1 0

−1

=

 1/
√

2 −1/
√

2 0
0 0 1

1/
√

2 1/
√

2 0


3 p.

(e) What happens to the uncontrollable state, and what will the consequences
be on the original states x1, x2, and x3?

1 p.

(f) Use the result from (e) to give a reduced state-space model, valid after
initial transients have settled and keeping the meaning and quantities from
the original model.

1 p.
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3. A linear time invariant state space model (A,B,C,D) has 12 states. However,
if we only want to describe the system response from the control input u to
the output y the number of states can be reduced. The following holds for the
model

rank
([

B AB A2B . . . A11B
])

= 8

rank
([

CT ATCT . . . (AT )11CT
])

= 7

(a) What is the possibly lowest number of states required?

(b) What is the possibly largest number of states required?

2 p.

4. Step response experiments have been conducted on a system with two control
inputs and two control outputs (see figure).
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(a) State an approximate transfer function matrix for the system.

2 p.

(b) Use RGA analysis to suggest pairing in a decentralized control (suggestion
can be made from figure, i.e. without answering (a). This gives 2 p.).

3 p.
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5. Assume we want to estimate the states of an observable system

ẋ(t) = Ax(t) + Bu(t) + Nw(t)

y(t) = Cx(t) + v(t),

where w and v are independent stochastic disturbances. For the Kalman filter
estimate to be optimal, both w and v has to be white noise. A common
situation, though, is that only the measurement noise v can be assumed white
while the process disturbance w is coloured.

(a) We begin by studying a specific case, where the measurement noise has
intensity Rv = 1, and the process and the spectrum of the process distur-
bance are given by

A = −1, B = 1, C = 1, N = 1 and Φw(ω) =
1

1 + ω2

Add a model of the process disturbance to the process model and derive
the optimal continuous time observer of x. State the observer on state-
space form.

Unfortunately, the solution is difficult to determine by hand. However,
you may use that for the optimal observer the stationary estimation error
variance is Var{x̂− x} = 0.2.

5 p.

(b) Now, we will study the general case. Assume that the process is stable
and that the disturbance w is scalar and can be modelled using spectral
factorization. Is it guaranteed that we can always estimate x optimally
using a Kalman filter for such a system (motivation required)?

Hint: It may be useful to use observer canonical form to model the dis-
turbance.

2 p.
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