
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Electrical Engineering
Division of Systems and Control

EXAMINATION IN LINEAR CONTROL SYSTEM DESIGN

(Course SSY285)

Friday August 30, 2019

Time and place: 08:30 - 12:30 at Hörsalsvägen
Teacher: Torsten Wik (031 - 772 5146)

The total points achievable are 30. Unfinished solutions normally results in 0 points.
Incorrect solutions with significant errors, unrealistic results that are not commented
or solutions that are too difficult to follow also result in 0 points.

Numerically incorrect calculations that do not cause unrealistic results will normally
lead to reduction of 1 point. Incorrect answers that are consequences of a previous
error and do not simplify the problem will not lead to any further reduction.

The scales for grading are

Grade 3: at least 12 points
Grade 4: at least 18 points
Grade 5: at least 24 points

The following aids are allowed:

1. Feedback Systems by Åström and Murray OR Reglerteknikens grunder by
Lennartson OR Reglerteknik, grundlaggande teori by Glad and Ljung OR
Linear optimal control systems by H. Kwakernaak and R. Sivan

Paper copies are accepted instead of books

2. 1 piece of A4 paper, with hand written notes on both sides. Copied sheets are
not allowed!

3. Mathematical and physical handbooks of tables, such as Physics handbook
and Beta Mathematics Handbook.

4. Memory depleted, non-programmable pocket calculator.

Notes, mobile telephones, laptops or palmtops, are not allowed!

The results are open for review on Tuesday September 17, at 12:45 - 13:30 at the
department.

Good Luck!
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1. Assume we have derived a state space model

x(k + 1) =

[
1 0
1 1

]
x(k) +

[
1
0

]
u(k)

y(k) =
[

0 1
]
x(k)

(a) Determine L in a time invariant state feedback u(k) = −Lx(k) + Kr(k)
such that both closed loop poles are 0.9.

3 p.

(b) Determine K such that y = r in steady state (provided we have a correct
model and no disturbances).

1 p.

2. Consider

d

dt
x(t) =

 0 0 1
1 0 0
0 1 2

x(t) +

 1
0
0

u(t)

By the use of a state feedback u(t) = −Lx(t), can we place the poles of the
closed loop system arbitrarily?

2 p.

3. A continuous time linear system is given by

y(t) =


0

2

p + 1

0
1

p
1

p + 1

2

p + 1

u(t)

Note: p is the time derivative operator (d/dt) which can be used in calculations
for transfer function operators, such as the elements in the above matrix, in
the same way as the Laplace variable s is used for transfer functions.

(a) What are the poles and zeros of this multivariable system?

2 p.

(b) Give a state space realization of the system. Is it minimal?

2 p.
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4. A discrete time first order process is to be controlled using a discrete time
PI-controller. In the illustration below we use the time shift operator q (for
example: qy(k) ≡ y(k + 1) and y(k) = (1/(q − 0.5)u(k)).

e u yr

_

processPI controller

KP KI
1

q - 1
1

q - 0.5
+

The idea in this problem is to show how PI controller parameters can be
determined by state feedback optimization.

(a) Formulate the process model on a standard state space form, i.e.

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

1 p.

(b) Introduce the integral state

xI(k) =
1

q − 1
e(k)

and give an extended state space model

xe(k + 1) = Aexe(k) + Beu(k) + Krr(k)

y(k) = Cexe(k)

including the integral state.

1 p.

(c) For the extended model we may now determine a state feedback

u(k) = −Lexe(k),

by minimization of (we may set r = 0, and note that y2 = xT
e CeC

T
e xe)

J =
∞∑
k=0

y2(k) + quu
2(k) + qIx

2
I(k)

Assume we have solved the Ricatti equations giving the optimal Le. Ex-
press KP and KI in terms of Le (you may assume r = 0).

1 p.

(d) This method works also for higher order SISO transfer functions with no
common poles and zeros. What can we say about the stability then?

1 p.
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5. Consider the system

G(s) =
1

s
e−0.6s

from input u(t) to output y(t).

This system is to be discretized for the sampling time h = 1 and zero order
hold input. The difficulty here is that there is a time delay that is not equal
to a multiple of the sampling time.

(a) Express the above model as a continuous time LTI state space model with
delayed input.

1 p.

(b) Use the analytical solution to the state space model to derive the corre-
sponding discrete time state space model on standard form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)

for which y(k) = y(kh) = y(t) if u(k) = u(t) for all t = kh.

2 p.

6. The following system is a simple delay system with additive noise:

x(k + 1) =

[
0 1
0 0

]
x(k) +

[
0
1

]
u(k) + v1(k)

y(k) =
[

1 0
]
x(k) + v2(k)

where v1 and v2 are independent, zero mean, gaussian distributed white noise

with variance R1 =

[
1 0
0 2

]
and R2 = 1.

(a) Is the system observable?

1 p.

(b) Show that for a standard predictive Kalman filter, i.e. x̂p(k) = x̂(k|k −
1), there is no feedback of the innovation y(k) − ŷ(k|k − 1) so that the
estimates are based only on the model (not recommendable).

3 p.

(c) To improve the estimation we include the measurement y(k) in our es-
timation of x̂(k). Determine the Kalman filter for the filter case, i.e.
x̂f (k) = x̂(k|k). How much are the estimation errors variances reduced
compared to that of x̂p?

3 p.
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7. Consider the block scheme below.

u

d n

y

+

+

+

+1

1+2s

1

1+2s

We can assume the disturbance v is white noise with unit variance, and for d
the following spectrum has been determined experimentally:

Φd(ω) =
1

ω2 + 1

(a) Write the system on the state space form

d

dt
x(t) = Ax(t) + Bu(t) + Ne(t)

y(t) = Cx(t) + n(t),

where e(t) is white noise with intensity

[
1 0
0 1

]
.

2 p.

(b) Assume we have determined the spectrum also for the measurement noise
n as

Φn(ω) =
ω2 + 4

ω2 + 9
.

Rewrite the state space model once more on standard form (Note! Not
the same matrices as in (a))

d

dt
x(t) = Ax(t) + Bu(t) + Nv1(t)

y(t) = Cx(t) + v2(t),

where

[
v1
v2

]
is white noise with intensity R =

[
R1 R12

RT
12 R2

]
!

2 p.

(c) What will the intensity matrix R be if n, d and v are all independent?

2 p.
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