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1. Timeframe: 4 hours.

2. Teacher: Balazs Kulcsar, Chalmers internal phone number: 1785

3. 20 points can be reached in total (half of a point, i.e. 0.5, can also be obtained). Note, exam grades will
only be approved if all assignments and the lab have been approved by the TA too. Lic/PhD students
have to reach at least 12 points to pass. For Msc students Table 1 shows the grading system.

Table 1: Grading for Msc students

Points Grade

8 . . . 11.5 3
12 . . . 15.5 4
16 . . . 20 5

4. During this written exam, it is optionally permitted to use printed materials such as (teacher(s) will
show up and do inspection):

• Either of the course textbooks (hardcopy or plain printed version, without notes inside!): Feedback
systems, an introduction for scientists and engineers by K. J. Åström and R. M. Murray, ISBN-13:
978-0-691-13576-2 OR Reglerteknikens grunder by Bengt Lennartson, ISBN: 91-44-02416-9.

• 1 piece of A4 paper, with hand written notes on both sides.

• Pocket calculator (non-programmable, cleared memory, without graphical plotting function). Ad-
ditionally to Chalmers’ rules Casio fx-991 types are allowed.

• Mathematical handbook Beta.

5. Note that phones, tablets, computers, any other communication devices are not allowed to use during
the exam session. Teacher(s) will show up in person during the examination in the first and last 60 min.

6. Examination results will be advertised no later than September 8th 2014 (pingpong.chalmers.se). In-
spection of results on September 8th and 9th 2014 10-11 am, E-building floor 5, room 5414.

Good luck!
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Figure 1: Open-loop block diagram

Questions

1. Given the following system representation by means of block diagram in Figure 1, where a2 = −0.1, a3 =
−0.2, b1 = 1 c1 = 0.1, c2 = 1, d = 0.1 and a1 is unknown.

a) Find the discrete-time state-space equations (1 point).

b) Find the value of the coefficient a1 such that the system poles become p1 = −0.2 and p2 = 0.5 (1
point).

c) Find G(z) on the basis of the coefficient matrices A,B,C,D with the previously obtained a1. Based
on G(z), is this a non-minimum phase representation? Is the system input-output stable? Motivate your
answer (2 point)!

d) Given the initial condition x(0) =

[

1
1

]

, determine the output value of the autonomous system y(1) (1

point).

2. Given the following state space representation by,

ẋ(t) =

[

1 2
α β

]

x(t) +

[

1
1

]

u(t)

y(t) =
[

0 1
]

x(t) + (α · β)u(t)

where α, β are real valued finite scalars.

a) Find value(s) of α and β when the observability matrix of is given by O =

[

0 1
1 0

]

(1 point).

b) Is the system with the numerical values found previously of minimal order? (1 point).

c) With the previous values for α and β, find the transformation matrix T that transforms the above
state-stale representation to controller canonical form. Calculate the values Ã, B̃, C̃, D̃ with the help of
the transformation matrix T (3 point).

3. Consider the following continuous time system given by a state space representation as,

ẋ1(t) = x2(t) + u(t)

ẋ2(t) = x1(t) +
x2(t)

2

J(u) =

∫

∞

0

(

x2
2
(t) + x2

1
(t) + qu · u2(t)

)

dt.
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where qu = 1.

a) Find the optimal (steady-state LQR) feedback gain (K̄) that minimizes J(u) by applying the diagonal

solution structure as P̄ =

[

p1 4
4 p2

]

. What are the closed-loop optimal poles? (3 point)

b) Draw the block diagram for the closed loop LQR controlled system (including amplifications, integra-
tors) (1 point).

c) Find the optimal cost functional value with the optimal LQR state feedback applied, i.e. J0(u
∗) when

x0 =

[

1
1

]

(1 point).

4. Consider the following time discrete problem by,

x(k + 1) = −x(k) + v1(k) + 10v2(k),

y1(k) = x(k) +w1(k),

y2(k) = 0.1x(k) + w2(k),

where the scalar noise intensities are rw1
= 1, rw2

= 1, rv1 = 1, rv2 = 1. All noises are normally
distributed uncorrelated white noise sequences.

a) Find the optimal steady state Kalman filter gain L̄ to minimize the ”delayed” state error covariance,
p̄ = E{x̃(k|k − 1)x̃(k|k − 1)T } > 0(2 point).

b)Find the closed loop system observer’s pole, i.e. thereof the A− L̄C with previously obtained gain L̄.
(1 point).

5. *(challenging exercise) Given the system dynamics and the performance index as,

ẋ(t) = −1.5x(t) +
√
2u(t) + d(t)

y(t) = 2x(t)

J(u, d) =

∫

∞

0

(

y2(t) + u2(t)− γ2d2(t)
)

dt

where d(t) is a 2-norm bounded but time varying disturbance signal. Find the stabilizing, state-feedback
and optimal min-max solutions by the modified CARE if γ = 1. Find both u∗(t) and d∗(t) (2p).
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