
CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Signals and Systems

Control, Automation and Mechatronics

SSY280 Model Predictive Control

Exam 2016-04-08

14:00 – 18:00

Teachers: Bo Egardt (tel 3721) and Faisal Altaf (tel 1774). We will visit
twice during the exam.

The following items are allowed to bring to the exam:

• Chalmers approved calculator.

• One A4 sheet (front+back page) with your own notes.

• Mathematics Handbook (Beta).

Note: Solutions should be given in English! They may be short, but
should always be clear, readable and well motivated!

Grading: The exam consists of 5 problems of in total 30 points. The
nominal grading is 12 (3), 18 (4) and 24 (5).
Review of the grading is offered on April 25 at 12.00 – 13.00 in the office of
Faisal Altaf. If you cannot attend at this occasion, any objections concerning
the grading must be filed in written form not later than two weeks after the
regular review occasion.

GOOD LUCK!



Problem 1.

a. An active set method is used for two versions of the standard LQ type
MPC studied in the course: (i) the non-condensed version and (ii) the
condensed one. Disregarding any inequality constraints, what is the
size of the linear system of equations to solve in each iteration, if the
problem has horizons N = M = 20, number of states n = 5 and number
of inputs m = 1? (2 p)

b. You are asked to implement an MPC controller of the type studied in
the course. However, there is not time enough to think about what to
do when the algorithm encounters infeasibility. What can be done to
completely avoid this risk? (2 p)

c. Consider an LTI system on standard (A,B,C) state-space form. As-
sume that the system is square (i.e. the number of inputs and outputs
are equal) and that the transfer function H(z) has the property that
H(1) is invertible. Show that an arbitrary setpoint vector ysp is a fea-
sible (attainable) steady-state target. (2 p)

d. Explain what is meant by recursive feasibility. (2 p)

e. Consider a standard quadratic programming (QP) problem with both
equality and inequality constraints. What is the main idea behind
the barrier method to solve the problem? Is the transformed problem
convex? Motivate your answer! (2 p)

Solution:

a. There are n ·N = 100 state variables and m ·N = 20 control variables.
Hence, there are 120 primal variables in the non-condensed version and
20 in the condensed. In addition, there are n ·N = 100 dual variables
for the equality constraints in the non-condensed version. Hence, the
sizes are 120 + 100 = 220 and 20, respectively.

b. The only way to completely avoid the risk is to not allow state con-
straints (including terminal constraints).

c. The steady-state target should fulfil the equation[
I − A −B
C 0

] [
xs
us

]
=

[
0
ysp

]
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Define us = H(1)−1ysp. It then follows that H(1)us = ysp or C(I −
A)−1Bus = ysp. By defining xs = (I − A)−1Bus, we thus have

(I − A)xs = Bus

Cxs = ysp

which are the required conditions for any steady state target.

d. Recursive feasibility is the property that solving the MPC optimization
problem for an initial feasible state results in the next state being feasible
as well. This results in a sequence of feasible (solvable) optimal control
problems.

e. The main idea behind the barrier method is to get rid of the inequality
constraints of the form gTi x ≤ hi by adding terms of the form − log(hi−
gTi x) to the objective. The idea is that these terms act like “barriers”
towards entering the infeasible region. The objective stays convex, since
the log function is concave, and hence − log is convex.
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Problem 2.
In this problem, we consider solving the following quadratic program using
the Newton method:

minimize f(x) =
1

2
xTQx+ pTx, Q � 0

subject to Ax = b

a. Show how the Newton update equation for solving r(x) = 0 can be
derived from a linear approximation of the function r(x) at the current
iterate. (1 p)

b. Apply the Newton method to the KKT conditions of the QP given
above and give an expression for the Newton update of primal and
dual variables. (2 p)

c. Show that the Newton step derived in (b) actually gives the solution
of the KKT equations in one step. (2 p)

Solution:

a. Let x be the current iterate (“guess”) and ∆x be the update step.
Putting the linear approximation around x to 0 gives:

r(x+ ∆x) ≈ r(x) +
∂r(x)

∂x
∆x = 0 ⇒ ∂r(x)

∂x
∆x = −r(x)

b. The KKT conditions for the problem are (using the Lagrangian L(x, ν) =
1
2
xTQx+ pTx+ νT (Ax− b)):

∇L(x, ν) = Qx+ p+ ATν = 0

h(x) = Ax− b = 0

Applying the update equation in (a) to this system of equations of the
variable (x, ν) gives[

Q AT

A 0

] [
∆x
∆ν

]
= −

[
Qx+ p+ ATν

Ax− b

]
c. Using the notation x+ = x+∆x and similarly for ν, the update equation

given in (b) can be written as[
Q AT

A 0

] [
x+

ν+

]
=

[
−p
b

]
which is identical to the KKT conditions given above. The Newton
method thus gives the optimal primal and dual variables in one step.
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Problem 3.
Consider a first order system described by the model

x(k + 1) = x(k) + u(k)

We want to construct an LQ based MPC for this system based on minimiza-
tion of the 1-step ahead cost function (where as usual ‘current time’ k has
been placed at the origin)

V1(x(0), u(0)) = x2(0) + x2(1),

with state terminal constraint |x(1)| ≤ 1 and control constraint |u(0)| ≤ 1.

a. Begin by neglecting the constraints. Determine the control law result-
ing from the unconstrained LQ problem. What is the feasible set of
initial states? (1 p)

b. Now include the constraints on u and x. What is now the feasible set?
(1 p)

c. In order to enlarge the set if feasible states in (b), the terminal con-
straint on x is dropped (but the constraint on u is kept). Determine
the control law for the constrained MPC formulation.
Hint: Use the KKT conditions. (2 p)

d. Determine the closed-loop dynamics for the latter case. (1 p)

Solution:

a. The cost function is, with x = x(0) and u = u(0),

V1(x, u) = x2(0) + x2(1) = x2 + (x+ u)2 = 2x2 + 2xu+ u2

From this follows that the unconstrained control law, obtained by putting
∂
∂u
V1(x, u) = 0, is given by

u = −x,

which is a dead-beat control law. Since the constraints have been ne-
glected, the feasible set is the entire real line.

b. With the constraint on u, x can be changed in one step at most ±1.
From the terminal constraint |x(1)| ≤ 1 it follows that the feasible set
is given by |x| ≤ 2.
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c. Expressing the constraints as u − 1 ≤ 0 and −u − 1 ≤ 0, respectively,
the Lagrangian becomes

L(u, λ1, λ2) = 2x2 + 2xu+ u2 + λ1(u− 1) + λ2(−u− 1)

The KKT conditions are therefore

2x+ 2u+ λ1 − λ2 = 0

u− 1 ≤ 0

−u− 1 ≤ 0

λ1 ≥ 0, λ2 ≥ 0

λ1(u− 1) = 0, λ2(−u− 1) = 0

Investigating the different cases implied by the complementarity condi-
tions, the following constrained MPC control law is obtained:

u =


1, x < −1

−x, −1 ≤ x ≤ 1

−1, x > 1

d. From (c) it follows that the closed-loop system is described by

x(k + 1) =


x(k) + 1, x(k) < −1

0, −1 ≤ x(k) ≤ 1

x(k)− 1, x(k) > 1

i.e. the closed-loop system approaches the origin in a linear fashion
until it reaches the unit “ball”, and then converges to the origin in one
step.

Problem 4.
Consider the following system with two inputs and two outputs:

A =

0.5 0 0
0 0.9 0
0 0 0.5

 B =

0.5 0
0 1
1 1

 C =

[
1 1 0
0 0 1

]

a. Is the output setpoint ysp =
[
2 2.2

]T
attainable, i.e. is there a steady-

state target (xs, us) such the Cxs = ysp? (2 p)

b. Now assume only the first input is available for control, i.e. u2 ≡ 0.
Is the output setpoint still attainable? Determine the setpoint target
by minimising ‖Cxs − ysp‖. (3 p)
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Solution:

a. Having 2 inputs and 2 outputs makes it possible to solve the conditions
for setpoint tracking, i.e.[

I − A −B
C 0

] [
xs
us

]
=

[
0
ysp

]
From the first block row it follows that

xs =

1 0
0 10
2 2

us
which gives the steady-state output

ys =

[
1 10
2 2

]
us

so that with uTs =
[
1 0.1

]
the setpoint is attained.

b. From (a) it follows that in steady-state we now have ys =
[
1 2

]T
u1s,

with u1 the remaining scalar input. Hence, the output setpoint ysp =[
2 2.2

]T
can not be reached in steady-state.

Minimising ‖Cxs − ysp‖2 = (u1s − 2)2 + (2u1s − 2.2)2 by setting the
derivative equal to zero gives 3u1s − 4.2 = 0, hence u1s = 1.4. The
setpoint target becomes xs =

[
1.4 0 2.8

]
, u1s = 1.4 and thus ys =[

1.4 2.8
]
.

Remark: note that [1.4 2.8] is the orthogonal projection of the vector

[2 2.2] on the straight line described by ys =
[
1 2
]T
u1s.
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Problem 5.
Consider a model predictive controller based on the following finite time
optimal control problem:

min
{u(0),u(1),...,u(N−1)}

N−1∑
k=0

(
xT (k)Qx(k) + uT (k)Ru(k)

)
+ xT (N)Pfx(N)

subject to x(k + 1) = Ax(k) +Bu(k), x(0) = x0

Cx(k) +Du(k) ≤ f, k = 0, . . . , N − 1

(1)

In this problem we have N = 3, and the controls u(k) are re-parametrized in
terms of a nominal, stabilizing feedback as

u(k) = Kx(k) + v(k),

which implies that the decision variables are now {v(k)}.

a. Denote by v the vector of decision variables, i.e.

v =

v(0)
v(1)
v(2)


Find matrices H and E, vectors h and g, and a constant c such that
the optimal control problem (1) can be rewritten as

min
v

vTHv + hTv + c

subject to Ev ≤ g
(2)

(2 p)

b. Assume now that there are no constraints in the problem (2). Hence,
at every time instant, the unconstrained problem

min
v

vTHv + hTv + c

is solved, giving the optimal solution

v∗ =

v∗(0;x)
v∗(1;x)
v∗(2;x)

 .
Suggest a choice of the terminal cost Pf , such that the closed-loop
system

x(k + 1) = (A+BK)x(k) +Bv∗(0;x(k))
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is stable. (3 p)

Hint 1: The “basic stability assumption” from the lecture notes reads

min
u∈U
{Vf (f(x, u)) + l(x, u) | f(x, u) ∈ Xf} ≤ Vf (x), ∀x ∈ Xf

Hint 2: The Lyapunov equation in discrete time reads

ATSA− S = −Q

Solution:

a. With the re-parametrization, the state equation becomes

x(k + 1) = (A+BK)x(k) +Bv(k) = Ax(k) +Bv(k)

so that x(1)
x(2)
x(3)

 =

AA2

A3

x(0) +

 B 0 0
AB B 0
A2B AB B

v(0)
v(1)
v(2)


or, with a more compact notation,

X = Ωx(0) + Γv

Introducing the matrices Q̄ = diag (Q,Q, Pf ) and R̄ = diag (R,R,R),
the objective can now be written

xT (0)Qx(0) + X T Q̄X + vT R̄v

= xT (0)Qx(0) + (Ωx(0) + Γv)T Q̄(Ωx(0) + Γv) + vT R̄v

= vT (ΓT Q̄Γ + R̄)v + 2xT (0)ΩT Q̄Γv + xT (0)(Q+ ΩT Q̄Ω)x(0)

= vTHv + hTv + c

with obvious definitions of H, h and c. In a similar way, we get the
constraint C +DK

(C +DK)A
(C +DK)A2

x(0)+

 DB 0 0
(C +DK)B DB 0

(C +DK)AB (C +DK)B DB

v(0)
v(1)
v(2)

 ≤
ff
f


or DB 0 0

(C +DK)B DB 0
(C +DK)AB (C +DK)B DB

v ≤

ff
f

−
 C +DK

(C +DK)A
(C +DK)A2

x(0)
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b. First note that, since there is no terminal constraint (Xf = X), we
need to find Vf (x) = xTPfx, such that the “basic stability assumption”
is satisfied for all x (and with u replaced by v). Since the feedback in the
re-parametrized problem is stabilizing, A = A+ BK is a stable matrix
and hence, for any Qs � 0 there is an S � 0 such that ATSA − S =
−Qs, or

xT (A+BK)TS(A+BK)x+ xTQsx = xTSx, ∀x

Choosing Qs = Q+KTRK gives

xT (A+BK)TS(A+BK)x+ xTQx+ (Kx)TR(Kx) = xTSx, ∀x

Hence, the inequality in the “basic stability assumption” is satisfied with
equality and the choice v = 0. The conclusion is that Pf should be
chosen as the solution of the Lyapunov equation

(A+BK)TPf (A+BK)− Pf = −(Q+KTRK)

THE END!
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