
CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Signals and Systems

Control, Automation and Mechatronics

SSY280 Model Predictive Control

Exam 2016-03-18

08:30 – 12:30

Teachers: Bo Egardt (tel 3721) and Faisal Altaf (tel 1774). We will visit
twice during the exam.

The following items are allowed to bring to the exam:

• Chalmers approved calculator.

• One A4 sheet (front+back page) with your own notes.

• Mathematics Handbook (Beta).

Note: Solutions should be given in English! They may be short, but
should always be clear, readable and well motivated!

Grading: The exam consists of 5 problems of in total 30 points. The
nominal grading is 12 (3), 18 (4) and 24 (5).
Review of the grading is offered on April 5 at 12.00 – 13.00 in the office of
Faisal Altaf. If you cannot attend at this occasion, any objections concerning
the grading must be filed in written form not later than two weeks after the
regular review occasion.

GOOD LUCK!



Problem 1.

a. The (steady-state) setpoint tracking problem for the case with more
control inputs than controlled outputs presents a potential problem.
Which is the problem, and how can it be avoided? (2 p)

b. The condensed version of the optimization problem being solved in the
LQ type MPC studied during the course offers an advantage relative to
the non-condensed version – which? On the other hand, it “destroys”
an attractive feature of the non-condensed version – which? (2 p)

c. When proving stability of a model predictive controller, a fundamental
step is the following assumption (taken from the lecture notes):

min
u∈U
{Vf (f(x, u)) + l(x, u) | f(x, u) ∈ Xf} ≤ Vf (x), ∀x ∈ Xf

Explain how this assumption can be shown to hold by choosing Xf =
{0}. (2 p)

d. The MPC algorithm studied during the course is based on i) a linear
model; ii) quadratic objective, and iii) affine inequality constraints.
Explain in what way these assumptions make the MPC optimization
problem convex. (2 p)

e. Consider a standard quadratic programming (QP) problem with both
equality and inequality constraints. What is the main idea behind
the barrier method to solve the problem? Is the transformed problem
convex? Motivate your answer! (2 p)

Solution:

a. The problem is that there usually exist multiple solutions to the set-
point tracking problem. Setpoints for inputs, in addition to setpoints
for outputs, may be used to avoid this.

b. In the condensed version, the states are expressed in terms of the initial
state and the future controls, so that only the control actions are the
decision variables. In this way, fewer decision variables are obtained,
but the price being paid is that the sparsity of the original problem,
involving both states and controls as decision variables, is lost.

c. The inequality is fulfilled with equality for x = u = 0 if f(0, 0) = 0,
Vf (0) = 0 and l(0, 0) = 0.
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d. The objective is convex, since a quadratic function with positive
semidefinite Hessian is convex. The linear model implies that state
predictions and future controls are related via affine equality con-
straints. Affine inequality constraints on input and state constitute
convex inequality constraints. Hence, all the conditions for a con-
vex optimization problem on standard form are fulfilled.

e. The main idea behind the barrier method is to get rid of the inequality
constraints of the form gTi x ≤ hi by adding terms of the form − log(hi−
gTi x) to the objective. The idea is that these terms act like “barriers”
towards entering the infeasible region. The objective stays convex, since
the log function is concave, and hence − log is convex.

Problem 2.
In this problem, we consider solving the following quadratic program using
the Newton method:

minimize f(x) =
1

2
xTQx+ pTx, Q � 0

subject to Ax = b

a. Show how the Newton update equation for solving r(x) = 0 can be
derived from a linear approximation of the function r(x) at the current
iterate. (1 p)

b. Apply the Newton method to the KKT conditions of the QP given
above and give an expression for the Newton update of primal and
dual variables. (2 p)

c. Show that the Newton step derived in (b) actually gives the solution
of the KKT equations in one step. (2 p)

Solution:

a. Let x be the current iterate (“guess”) and ∆x be the update step.
Putting the linear approximation around x to 0 gives:

r(x+ ∆x) ≈ r(x) +
∂r(x)

∂x
∆x = 0 ⇒ ∂r(x)

∂x
∆x = −r(x)

b. The KKT conditions for the problem are (using the Lagrangian L(x, ν) =
1
2
xTQx+ pTx+ νT (Ax− b)):

∇L(x, ν) = Qx+ p+ ATν = 0

h(x) = Ax− b = 0
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Applying the update equation in (a) to this system of equations of the
variable (x, ν) gives[

Q AT

A 0

] [
∆x
∆ν

]
= −

[
Qx+ p+ ATν

Ax− b

]
c. Using the notation x+ = x+∆x and similarly for ν, the update equation

given in (b) can be written as[
Q AT

A 0

] [
x+

ν+

]
=

[
−p
b

]
which is identical to the KKT conditions given above. The Newton
method thus gives the optimal primal and dual variables in one step.

Problem 3.
Consider a first order system described by the model

x(k + 1) = 0.5x(k) + u(k), u(k) ≥ 0

where it should be noticed that only non-negative control inputs are allowed.
We want to construct an LQ based MPC for this system based on minimizing
the 1-step ahead cost function

V1(x(0), u(0)) = x2(1) + u2(0),

where as usual ‘current time’ k has been placed at the origin.

a. Determine the cost function V1(x, u) as a function of current state x =
x(0) and control candidate u = u(0). Based on this, determine the
control law resulting from the unconstrained LQ problem. (2 p)

b. Now assume that the control constraint is taken into consideration, i.e.
we would like to minimize V1 under the constraint

u ≥ 0.

Determine the control law for the constrained MPC formulation. (2 p)

c. Show that the state converges to zero for the closed-loop system ob-
tained with the constrained MPC. (1 p)

Solution:
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a. The cost function is

V1(x, u) = x2(1) + u2(0) = (0.5x+ u)2 + u2 = 2(u+
x

4
)2 +

1

8
x2

From this follows that the unconstrained control law, minimizing V1, is
given by

u = −x
4

b. With the constraint on u, the minimizing control is not any longer
allowed for positive x. However, for positive x, it follows from the
expression

V1(x, u) = 2u2 + xu+
1

4
x2

that V1(x, u) is minimized by the choice u = 0 (both u-dependent terms
increase with u). The constrained MPC control law is hence

u(x) =

{
−x/4 x ≤ 0

0 x > 0

c. From (b) it follows that the closed-loop system is described by either of
two equations

x(k + 1) =

{
0.25x(k) x(0) < 0

0.5x(k) x(0) ≤ 0

i.e the system is governed by the open-loop dynamics if the initial state
is negative. In either case, the state converges to zero exponentially and
the closed-loop system is stable.

Problem 4.
Consider a process described by the standard linear state space model

x+ = Ax+Bu

y = Cx

It is assumed that the model is detectable. This model is extended with a
vector d of additive disturbances at the plant input as shown below. The
dimension of d is equal to the dimension of u.

+ +

d

u
Plant y
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a. Assuming d is modeled as constant but unknown, show how the original
plant model can be augmented to include the disturbance. (1 p)

b. In the SISO case, determine a condition on the plant zeros that guar-
antees that the constant but unknown disturbance can be estimated
based on measurements of inputs and outputs.
Hint: The test on detectability of the augmented system, given during
the course, can be formulated as

rank

[
zI − A −Bd

C Cd

]
= n+ nd, for z = 1

(2 p)

c. For the following special case, a first order SISO system, determine
a state observer with deadbeat error dynamics (all eigenvalues in the
origin):

x(k + 1) = 0.9x(k) + 0.5
(
u(k) + d(k)

)
y(k) = x(k)

(2 p)

Solution:

a. The augmented model is[
x
d

]+
=

[
A B
0 I

] [
x
d

]
+

[
B
0

]
u

y =
[
C 0

] [x
d

]
b. A necessary and sufficient condition for the augmented system to be

detectable is that (the system is SISO, i.e. square, so that the rank can
be tested by looking at the determinant)∣∣∣∣zI − A −B

C 0

∣∣∣∣ 6= 0, for z = 1

Multiplying the first block row by C(zI−A)−1 and subtracting from the
second block row will not affect the determinant:∣∣∣∣zI − A −B

C 0

∣∣∣∣ =

∣∣∣∣zI − A −B
0 C(zI − A)−1B

∣∣∣∣ = det(zI − A)H(z) = n(z)

where H(z) = C(zI − A)−1B is the transfer function of the system
and n(z) its numerator polynomial. Hence, the detectability condition
is that there must be no zero of the transfer function in z = 1.
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c. The augmented model for the example is[
x
d

]+
=

[
0.9 0.5
0 1

] [
x
d

]
+

[
0.5
0

]
u

y =
[
1 0

] [x
d

]
A standard observer for the augmented system is given by[

x̂

d̂

]+
=
([0.9 0.5

0 1

]
−
[
lx
ld

] [
1 0

] ) [x̂
d̂

]
+

[
0.5
0

]
u(k) +

[
lx
ld

]
y(k)

The characteristic polynomial for the error dynamics is given by

(z − (0.9− lx))(z − 1) + 0.5ld = z2 + (lx − 1.9)z + 0.9− lx + 0.5ld

which implies that the choice lx = 1.9 and ld = 2 gives deadbeat dynam-
ics.

Problem 5.
In this problem we will investigate the following two alternative MPC for-
mulations, both without constraints on the control input, for the nth order
system

x+ = Ax+Bu

I. The first formulation (familiar from the course) is based on the following
optimization problem:

min
x(·),u(·)

N−1∑
k=0

ls(x(k), u(k))

subject to x+ = Ax+Bu, x(0) = x0, x(N) = xs,

where the stage cost is given by

ls(x, u) =
1

2

(
(x− xs)TQ(x− xs) + (u− us)TR(u− us)

)
.

The steady state target (xs, us) is obtained from the optimization problem

min
xs,us

lsp(xs, us)

subject to
[
I − A −B

] [xs
us

]
= 0
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where setpoints xsp, usp for state and input have been defined and

lsp(xs, us) =
1

2

(
(xs − xsp)TQ(xs − xsp) + (us − usp)TR(us − usp)

)
.

II. The second formulation is instead based on the following optimization
problem:

min
x(·),u(·)

N−1∑
k=0

lsp(x(k), u(k))

subject to x+ = Ax+Bu, x(0) = x0, x(N) = xs,

with the stage cost

lsp(x, u) =
1

2

(
(x− xsp)TQ(x− xsp) + (u− usp)TR(u− usp)

)
. (1)

a. Show that in formulation (II) above, the solution will be unaffected by
modifying the stage cost to l∗sp(x, u) = lsp(x, u) + νT

(
(I − A)x − Bu

)
,

where ν is an arbitrary n−vector and lsp(x, u) is given in (1). (2 p)

b. Now, let ν in (a) above be the optimal dual variable when solving the
steady state target problem in formulation (I). Use the result in (a) to
show that formulations (I) and (II) will give the same solutions.
Hint: Use the KKT conditions to characterize the solution to the steady
state target problem. (3 p)

Solution:

a. From the model constraint follows that (I − A)x(k)− Bu(k) = x(k)−
x(k + 1). Hence,

N−1∑
k=0

νT
(
(I − A)x(k)−Bu(k)

)
=

N−1∑
k=0

νT
(
x(k)− x(k + 1)

)
= νT

(
x(0)− x(N)

)
= νT

(
x0 − xs

)
,

which does not depend on the optimization variables and therefore does
not affect the solution.
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b. The solution to the steady state target problem satisfies the KKT condi-
tions, in particular that the gradient of the Lagrangian L = lsp(xs, us)+
νT
(
(I−A)xs−Bus

)
is equal to zero, giving (differentiate w.r.t. xs and

us)

(xs − xsp)TQ+ νT (I − A) = 0, (us − usp)TR− νTB = 0

Multiplying from the right by x and u, respectively, and using the result
in (a) implies that adding the term

−
(
(xs − xsp)TQx+ (us − usp)TRu

)
from the stage cost for (II) will not affect the solution. However, this
modification to the stage cost of (II) will result in the stage cost of (I),
modulo constant terms. Hence, formulations (I) and (II) will give the
same solution.

THE END!
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